Some Lie algebras and groups associated to representations of Leibniz algebras

被引:1
|
作者
Tang, Rong [1 ]
Tan, Youjun [2 ]
Xu, Senrong [3 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[3] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Leibniz algebras; cohomology; derivations; automorphisms; ABELIAN EXTENSIONS; AUTOMORPHISMS;
D O I
10.1142/S0219498825500264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a representation (M; l, r) of a Leibniz algebra g, let D(g, M) (respectively, G(g, M)) be the Lie algebra (respectively, the group) of diagonal derivations (respectively, automorphisms) of the semidirect product g x M. We show that both D(g, M) and G(g, M) have a representation on the cohomology group HL2(g, M). In the case that (M; l, r) arises from an abelian extension of g by M, such representations are applied to construct exact sequences of Wells type for D(g, M) and G(g, M), respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] LIE-ALGEBRAS AND REPRESENTATIONS OF CONTINUOUS GROUPS
    LITTLEWOOD, DE
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1975, 14 (02) : 97 - 109
  • [22] On Some Properties of Lie-Centroids of Leibniz Algebras
    José Manuel Casas Mirás
    Xabier García-Martínez
    Natalia Pacheco-Rego
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3499 - 3520
  • [23] Lie algebras of Galois representations on fundamental groups
    Wojtkowiak, Zdzislaw
    GALOIS-TEICHMUELLER THEORY AND ARITHMETIC GEOMETRY, 2012, 63 : 601 - 627
  • [24] On Some Properties of Lie-Centroids of Leibniz Algebras
    Casas Miras, Jose Manuel
    Garcia-Martinez, Xabier
    Pacheco-Rego, Natalia
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3499 - 3520
  • [25] NILPOTENT LIE AND LEIBNIZ ALGEBRAS
    Ray, Chelsie Batten
    Combs, Alexander
    Gin, Nicole
    Hedges, Allison
    Hird, J. T.
    Zack, Laurie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2404 - 2410
  • [26] A class of Lie racks associated to symmetric Leibniz algebras
    Abchir, Hamid
    Abid, Fatima-Ezzahrae
    Boucetta, Mohamed
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (11)
  • [27] From Leibniz Algebras to Lie 2-algebras
    Sheng, Yunhe
    Liu, Zhangju
    ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (01) : 1 - 5
  • [28] EXTENSIONS OF REPRESENTATIONS OF LIE GROUPS AND LIE ALGEBRAS .1.
    HOCHSCHILD, G
    MOSTOW, GD
    AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (04) : 924 - 942
  • [29] Vinberg algebras associated to some nilpotent Lie algebras
    Remm, E
    Non-Associative Algebra and Its Applications, 2006, 246 : 347 - 364