Some Lie algebras and groups associated to representations of Leibniz algebras

被引:1
|
作者
Tang, Rong [1 ]
Tan, Youjun [2 ]
Xu, Senrong [3 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
[3] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词
Leibniz algebras; cohomology; derivations; automorphisms; ABELIAN EXTENSIONS; AUTOMORPHISMS;
D O I
10.1142/S0219498825500264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a representation (M; l, r) of a Leibniz algebra g, let D(g, M) (respectively, G(g, M)) be the Lie algebra (respectively, the group) of diagonal derivations (respectively, automorphisms) of the semidirect product g x M. We show that both D(g, M) and G(g, M) have a representation on the cohomology group HL2(g, M). In the case that (M; l, r) arises from an abelian extension of g by M, such representations are applied to construct exact sequences of Wells type for D(g, M) and G(g, M), respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Leibniz algebras associated with representations of filiform Lie algebras
    Ayupov, Sh. A.
    Camacho, L. M.
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 181 - 195
  • [2] Leibniz representations of Lie algebras
    Loday, JL
    Pirashvili, T
    JOURNAL OF ALGEBRA, 1996, 181 (02) : 414 - 425
  • [3] Leibniz Algebras Associated with Representations of Euclidean Lie Algebra
    Adashev, J. Q.
    Omirov, B. A.
    Uguz, S.
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (02) : 285 - 301
  • [4] Leibniz Algebras Associated with Representations of the Diamond Lie Algebra
    Uguz, Selman
    Karimjanov, Iqbol A.
    Omirov, Bakhrom A.
    ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (01) : 175 - 195
  • [5] Leibniz Algebras Associated with Representations of the Diamond Lie Algebra
    Selman Uguz
    Iqbol A. Karimjanov
    Bakhrom A. Omirov
    Algebras and Representation Theory, 2017, 20 : 175 - 195
  • [6] Leibniz Algebras Associated with Representations of Euclidean Lie Algebra
    J. Q. Adashev
    B. A. Omirov
    S. Uguz
    Algebras and Representation Theory, 2020, 23 : 285 - 301
  • [7] Leibniz Algebras Constructed by Representations of General Diamond Lie Algebras
    Camacho, L. M.
    Karimjanov, I. A.
    Ladra, M.
    Omirov, B. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (03) : 1281 - 1293
  • [8] Leibniz Algebras Constructed by Representations of General Diamond Lie Algebras
    L. M. Camacho
    I. A. Karimjanov
    M. Ladra
    B. A. Omirov
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 1281 - 1293
  • [9] Leibniz Algebras and Lie Algebras
    Mason, Geoffrey
    Yamskulna, Caywalee
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [10] Minimal representations of filiform Lie algebras and their application for construction of Leibniz algebras
    Karimjanov, I. A.
    Ladra, M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 144 : 235 - 244