The effect of landfast sea ice buttressing on ice dynamic speedup in the Larsen B embayment, Antarctica

被引:6
|
作者
Surawy-Stepney, Trystan [1 ]
Hogg, Anna E. [1 ]
Cornford, Stephen L. [2 ]
Wallis, Benjamin J. [1 ]
Davison, Benjamin J. [1 ]
Selley, Heather L. [1 ]
Slater, Ross A. W. [1 ]
Lie, Elise K. [1 ]
Jakob, Livia [3 ]
Ridout, Andrew [4 ]
Gourmelen, Noel [3 ,5 ]
Freer, Bryony I. D. [1 ,6 ]
Wilson, Sally F. [1 ]
Shepherd, Andrew [7 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds, England
[2] Univ Bristol, Sch Geog Sci, Bristol, England
[3] Earthwave Ltd, Edinburgh, Scotland
[4] UCL, Dept Earth Sci, London, England
[5] Univ Edinburgh, Sch Geosci, Edinburgh, Scotland
[6] British Antarctic Survey, Cambridge, England
[7] Northumbria Univ, Dept Geog & Environm Sci, Newcastle Upon Tyne, England
来源
CRYOSPHERE | 2024年 / 18卷 / 03期
关键词
PINE ISLAND GLACIER; ELEVATION MODEL; SURFACE MELT; MASS-BALANCE; SHEET; SHELF; STABILITY; OCEAN; ATMOSPHERE; PENINSULA;
D O I
10.5194/tc-18-977-2024
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We observe the evacuation of 11-year-old landfast sea ice in the Larsen B embayment on the East Antarctic Peninsula in January 2022, which was in part triggered by warm atmospheric conditions and strong offshore winds. This evacuation of sea ice was closely followed by major changes in the calving behaviour and dynamics of a subset of the ocean-terminating glaciers in the region. We show using satellite measurements that, following a decade of gradual slow-down, Hektoria, Green, and Crane glaciers sped up by approximately 20 %-50 % between February and the end of 2022, each increasing in speed by more than 100 m a - 1 . Circumstantially, this is attributable to their transition into tidewater glaciers following the loss of their ice shelves after the landfast sea ice evacuation. However, a question remains as to whether the landfast sea ice could have influenced the dynamics of these glaciers, or the stability of their ice shelves, through a buttressing effect akin to that of confined ice shelves on grounded ice streams. We show, with a series of diagnostic modelling experiments, that direct landfast sea ice buttressing had a negligible impact on the dynamics of the grounded ice streams. Furthermore, we suggest that the loss of landfast sea ice buttressing could have impacted the dynamics of the rheologically weak ice shelves, in turn diminishing their stability over time; however, the accompanying shifts in the distributions of resistive stress within the ice shelves would have been minor. This indicates that this loss of buttressing by landfast sea ice is likely to have been a secondary process in the ice shelf disaggregation compared to, for example, increased ocean swell or the drivers of the initial landfast sea ice disintegration.
引用
收藏
页码:977 / 993
页数:17
相关论文
共 50 条
  • [31] The structure and effect of suture zones in the Larsen C Ice Shelf, Antarctica
    McGrath, Daniel
    Steffen, Konrad
    Holland, Paul R.
    Scambos, Ted
    Rajaram, Harihar
    Abdalati, Waleed
    Rignot, Eric
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2014, 119 (03) : 588 - 602
  • [32] SEISMIC INVESTIGATION OF THE LARSEN ICE SHELF, ANTARCTICA - IN SEARCH OF THE LARSEN BASIN
    JARVIS, EP
    KING, EC
    ANTARCTIC SCIENCE, 1995, 7 (02) : 181 - 190
  • [33] Ice Shelf Water Structure Beneath the Larsen C Ice Shelf in Antarctica
    Na, Ji Sung
    Davis, Peter E. D.
    Kim, Byeong-Hoon
    Jin, Emilia Kyung
    Lee, Won Sang
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (19)
  • [34] A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf
    Borstad, Chris
    Khazendar, Ala
    Scheuchl, Bernd
    Morlighem, Mathieu
    Larour, Eric
    Rignot, Eric
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (05) : 2027 - 2035
  • [35] The sensitivity of parameterization schemes in thermodynamic modeling of the landfast sea ice in Prydz Bay, East Antarctica
    Liu, Changwei
    Hao, Guanghua
    Li, Yubin
    Zhao, Jiechen
    Lei, Ruibo
    Cheng, Bin
    Gao, Zhiqiu
    Yang, Qinghua
    JOURNAL OF GLACIOLOGY, 2022, 68 (271) : 961 - 976
  • [36] Observation and simulation of landfast sea ice using thermodynamic modeling in Prydz Bay, East Antarctica
    Hao, Guanghua
    Wang, Anliang
    Sun, Yongming
    CLIMATE DYNAMICS, 2024, 62 (10) : 9719 - 9732
  • [37] Abrupt mid-Holocene ice loss in the western Weddell Sea Embayment of Antarctica
    Johnson, Joanne S.
    Nichols, Keir A.
    Goehring, Brent M.
    Balco, Greg
    Schaefer, Joerg M.
    EARTH AND PLANETARY SCIENCE LETTERS, 2019, 518 : 127 - 135
  • [38] Basement control on past ice sheet dynamics in the Amundsen Sea Embayment, West Antarctica
    Gohl, Karsten
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2012, 335 : 35 - 41
  • [39] Past ice sheet-seabed interactions in the northeastern Weddell Sea embayment, Antarctica
    Arndt, Jan Erik
    Larter, Robert D.
    Hillenbrand, Claus-Dieter
    Sorli, Simon H.
    Forwick, Matthias
    Smith, James A.
    Wacker, Lukas
    CRYOSPHERE, 2020, 14 (06): : 2115 - 2135
  • [40] New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment, Antarctica
    Nichols, Keir A.
    Goehring, Brent M.
    Balco, Greg
    Johnson, Joanne S.
    Hein, Andrew S.
    Todd, Claire
    CRYOSPHERE, 2019, 13 (11): : 2935 - 2951