Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents

被引:4
|
作者
Zeng, Shengda [1 ,2 ,3 ]
Papageorgiou, Nikolaos S. [4 ]
Winkert, Patrick [5 ]
机构
[1] Yulin Normal Univ, Guangxi Coll, Univ Key Lab Complex Syst Optimizat & Big Data Pro, Yulin 537000, Guangxi, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[5] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
Anisotropic Musielak-Orlicz Sobolev space; Discontinuous parameter; Variable exponent double-phase operator; Inverse problem; Multivalued convection; Steklov eigenvalue problem; LINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; REGULARITY; CONVECTION; IDENTIFICATION; EIGENVALUES; DEPENDENCE; MINIMIZERS; CALCULUS;
D O I
10.1007/s10957-022-02155-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we are concerned with the study of a variable exponent double-phase obstacle problem which involves a nonlinear and nonhomogeneous partial differential operator, a multivalued convection term, a general multivalued boundary condition and an obstacle constraint. Under the framework of anisotropic Musielak-Orlicz Sobolev spaces, we establish the nonemptiness, boundedness and closedness of the solution set of such problems by applying a surjectivity theorem for multivalued pseudomonotone operators and the variational characterization of the first eigenvalue of the Steklov eigenvalue problem for the p-Laplacian. In the second part, we consider a nonlinear inverse problem which is formulated by a regularized optimal control problem to identify the discontinuous parameters for the variable exponent double-phase obstacle problem. We then introduce the parameter-to-solution map, study a continuous result of Kuratowski type and prove the solvability of the inverse problem.
引用
收藏
页码:666 / 699
页数:34
相关论文
共 50 条
  • [21] Higher differentiability of solutions for a class of obstacle problems with variable exponents
    Foralli, Niccolo
    Giliberti, Giovanni
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 313 : 244 - 268
  • [22] Besov Regularity Estimates for a Class of Obstacle Problems with Variable Exponents
    Ma, Rumeng
    Yao, Fengping
    ACTA APPLICANDAE MATHEMATICAE, 2025, 196 (01)
  • [23] Gradient estimates for Orlicz double-phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (04) : 2215 - 2268
  • [24] Double-phase problems with reaction of arbitrary growth
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [25] THE HARDEST CONSTRAINT PROBLEMS - A DOUBLE-PHASE TRANSITION
    HOGG, T
    WILLIAMS, CP
    ARTIFICIAL INTELLIGENCE, 1994, 69 (1-2) : 359 - 377
  • [26] DOUBLE-PHASE PROBLEMS AND A DISCONTINUITY PROPERTY OF THE SPECTRUM
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) : 2899 - 2910
  • [27] Double-phase problems with reaction of arbitrary growth
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [28] Parabolic double phase obstacle problems
    Carl, Siegfried
    Winkert, Patrick
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
  • [29] Calderon-Zygmund estimates for elliptic double phase problems with variable exponents
    Byun, Sun-Sig
    Lee, Ho-Sik
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [30] Singular fractional double-phase problems with variable exponent via Morse's theory
    Ouaziz, Abdesslam
    Aberqi, Ahmed
    FILOMAT, 2024, 38 (21) : 7579 - 7595