Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents

被引:4
|
作者
Zeng, Shengda [1 ,2 ,3 ]
Papageorgiou, Nikolaos S. [4 ]
Winkert, Patrick [5 ]
机构
[1] Yulin Normal Univ, Guangxi Coll, Univ Key Lab Complex Syst Optimizat & Big Data Pro, Yulin 537000, Guangxi, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[3] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[4] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[5] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
Anisotropic Musielak-Orlicz Sobolev space; Discontinuous parameter; Variable exponent double-phase operator; Inverse problem; Multivalued convection; Steklov eigenvalue problem; LINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; REGULARITY; CONVECTION; IDENTIFICATION; EIGENVALUES; DEPENDENCE; MINIMIZERS; CALCULUS;
D O I
10.1007/s10957-022-02155-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the present paper, we are concerned with the study of a variable exponent double-phase obstacle problem which involves a nonlinear and nonhomogeneous partial differential operator, a multivalued convection term, a general multivalued boundary condition and an obstacle constraint. Under the framework of anisotropic Musielak-Orlicz Sobolev spaces, we establish the nonemptiness, boundedness and closedness of the solution set of such problems by applying a surjectivity theorem for multivalued pseudomonotone operators and the variational characterization of the first eigenvalue of the Steklov eigenvalue problem for the p-Laplacian. In the second part, we consider a nonlinear inverse problem which is formulated by a regularized optimal control problem to identify the discontinuous parameters for the variable exponent double-phase obstacle problem. We then introduce the parameter-to-solution map, study a continuous result of Kuratowski type and prove the solvability of the inverse problem.
引用
收藏
页码:666 / 699
页数:34
相关论文
共 50 条
  • [1] Inverse Problems for Double-Phase Obstacle Problems with Variable Exponents
    Shengda Zeng
    Nikolaos S. Papageorgiou
    Patrick Winkert
    Journal of Optimization Theory and Applications, 2023, 196 : 666 - 699
  • [2] Existence results for double phase obstacle problems with variable exponents
    Omar Benslimane
    Ahmed Aberqi
    Jaouad Bennouna
    Journal of Elliptic and Parabolic Equations, 2021, 7 : 875 - 890
  • [3] Existence results for double phase obstacle problems with variable exponents
    Benslimane, Omar
    Aberqi, Ahmed
    Bennouna, Jaouad
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) : 875 - 890
  • [4] DOUBLE PHASE OBSTACLE PROBLEMS WITH VARIABLE EXPONENT
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (9-10) : 611 - 645
  • [5] Besov regularity for a class of elliptic obstacle problems with double-phase Orlicz growth
    Zhao, Lijing
    Zheng, Shenzhou
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (01)
  • [6] Gradient estimates for Orlicz double phase problems with variable exponents
    Baasandorja, Sumiya
    Byunb, Sun-Sig
    Lee, Ho-Sik
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [7] Gradient estimates for Orlicz double phase problems with variable exponents
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Lee, Ho-Sik
    Nonlinear Analysis, Theory, Methods and Applications, 2022, 221
  • [8] Two solutions for Dirichlet double phase problems with variable exponents
    Amoroso, Eleonora
    Bonanno, Gabriele
    D'Agui, Giuseppina
    Winkert, Patrick
    ADVANCED NONLINEAR STUDIES, 2024, 24 (03) : 734 - 747
  • [9] Constant sign solutions for double phase problems with variable exponents
    Vetro, Francesca
    Winkert, Patrick
    APPLIED MATHEMATICS LETTERS, 2023, 135
  • [10] Higher differentiability results in the scale of Besov Spaces to a class of double-phase obstacle problems
    Grimaldi, Antonio Giuseppe
    Ipocoana, Erica
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28