A crystalline-amorphous interface engineering in Fe-doped NixP electrocatalyst for highly efficient oxygen evolution reaction

被引:4
|
作者
Cao, Shuai [1 ]
Fan, Xiaoming [2 ,3 ]
Wei, Li [2 ,3 ]
Cai, Ting [2 ,3 ]
Lin, Yuping [2 ,3 ]
Yang, Zeheng [2 ,3 ]
机构
[1] Bozhou Univ, Tradit Chinese Med Coll, Bozhou 236800, Anhui, Peoples R China
[2] Hefei Univ Technol, Sch Chem & Chem Engn, Hefei 230009, Anhui, Peoples R China
[3] Anhui Prov Key Lab Adv Catalyt Mat & React Engn, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN EVOLUTION; WATER OXIDATION; CONSTRUCTION; ELECTRODE; NIFEP;
D O I
10.1039/d3dt00448a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
OER (oxygen evolution reaction) is a critical reaction in several storage and conversion systems for renewable and clean electrochemical energies, including solar fuel devices, metal-air batteries, as well as regenerative fuel and water splitting cells. Regarding the shortcomings of OER, apart from the sluggish kinetics and high reaction overpotential, the reaction rate and overpotential are difficult to be optimized simultaneously. Herein, a novel hierarchical particle-sheet-structured Fe-doped NixP electrocatalyst is developed, which presents abundant interfaces between crystalline particle and amorphous sheet. The OER overpotential is reduced to 204 mV at 20 mA cm(-2) current density, while it is reduced to 225 and 231 mV at 100 and 300 mA cm(-2), respectively. The Fe-doped NixP electrocatalyst also shows fast reaction kinetics, whose Tafel slope is a remarkable 25 mV dec(-1). For an electrolytic cell whose cathode and anode are Pt/C/NF and Fe-NixP/NF, respectively, a mere 1.446 V voltage is necessary to drive a 10 mA cm(-2) current density for achieving overall water-splitting property. Notably, it also works stably at considerably high current densities of 500 and 1000 mA cm(-2), representing high potential for commercial applications.
引用
收藏
页码:5999 / 6007
页数:9
相关论文
共 50 条
  • [41] Metal-organic framework interface engineering for highly efficient oxygen evolution reaction
    He, Yuqian
    Yan, Feng
    Geng, Bo
    Zhu, Chunling
    Zhang, Xiaoli
    Zhang, Xitian
    Chen, Yujin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 619 : 148 - 157
  • [42] P vacancies at the crystalline-amorphous interface of NiFe(OH)x/NiPx/NF enhance the catalytic activity of the oxygen evolution reaction
    Wang, Peng
    Yu, Tao
    Hao, Liping
    Liu, Xuanwen
    JOURNAL OF POWER SOURCES, 2024, 589
  • [43] Interface engineering of NiVP/Fe+2Fe2+3O4 heterostructure for highly efficient oxygen evolution reaction
    Li, Yufeng
    Deng, Rudan
    Gao, Wei
    Tang, Weiwei
    Zhang, Zhe
    SURFACES AND INTERFACES, 2025, 56
  • [44] Ni-Doped CuS as an efficient electrocatalyst for the oxygen evolution reaction
    Kundu, Joyjit
    Khilari, Santimoy
    Bhunia, Kousik
    Pradhan, Debabrata
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (02) : 406 - 417
  • [45] Se-doped cobalt oxide nanoparticle as highly-efficient electrocatalyst for oxygen evolution reaction
    Li, Guoru
    Yin, Fengxiang
    Lei, Zhiping
    Zhao, Xinran
    He, Xiaobo
    Li, Zhichun
    Yu, Xiaoting
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (01) : 216 - 227
  • [46] VO2 as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction
    Choi, Yun-Hyuk
    NANOMATERIALS, 2022, 12 (06)
  • [47] Bimetallic oxide coupled with B-doped graphene as highly efficient electrocatalyst for oxygen evolution reaction
    Jiang, Yuanyuan
    Dong, Kai
    Lu, Yizhong
    Liu, Jiawei
    Chen, Bo
    Song, Zhongqian
    Niu, Li
    SCIENCE CHINA-MATERIALS, 2020, 63 (07) : 1247 - 1256
  • [48] Iron-Doped NiCoP Porous Nanosheet Arrays as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction
    Zhang, Qiong
    Yan, Dafeng
    Nie, Zhenzhen
    Qiu, Xiaobin
    Wang, Shuangyin
    Yuan, Jianmin
    Su, Dawei
    Wang, Guoxiu
    Wu, Zhenjun
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (02): : 571 - 579
  • [49] Interconnected CuO nanoplates as a highly efficient electrocatalyst for oxygen evolution reaction
    Pundir, Sachin
    Upadhyay, Sanjay
    Kumar, Niraj
    Joshi, Naveen Chandra
    Priya, Ruby
    Mir, Rameez Ahmad
    Hossain, Ismail
    Pandey, O. P.
    MATERIALS LETTERS, 2023, 336
  • [50] Fe7C3 nanoparticles anchored on N-doped biochar as electrocatalyst for highly efficient oxygen evolution reaction
    Chen, Wenhao
    Cao, Weitao
    Pi, Xinxin
    Liu, Zhen
    Li, Zhiyang
    Li, Jian
    Jing, Zhenyu
    Du, Qiuju
    Lai, Xiaoyong
    Li, Yanhui
    FUEL, 2024, 358