A hyperbolic generalized Zener model for nonlinear viscoelastic waves

被引:3
|
作者
Favrie, N. [2 ]
Lombard, B. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, LMA UMR 7031, Marseille, France
[2] Aix Marseille Univ, CNRS, IUSTI UMR 7343, Polytech Marseille, Marseille, France
关键词
Hyperelasticity; Generalized Zener model; Memory variables; Hyperbolic systems; DIFFUSE INTERFACE MODEL; PROPAGATION; FORMULATION; DYNAMICS; FLUID; MEDIA;
D O I
10.1016/j.wavemoti.2022.103086
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A macroscopic model describing nonlinear viscoelastic waves is derived in Eulerian formulation, through the introduction of relaxation tensors. It accounts for both constitutive and geometrical nonlinearities. In the case of small deformations, the governing equations recover those of the linear generalized Zener model (GZM) with memory variables, which is widely used in acoustics and seismology. The structure of the relaxation terms implies that the model is dissipative. The chosen family of specific internal energies ensures also that the model is unconditionally hyperbolic. A Godunovtype scheme with relaxation is implemented. A procedure for maintaining isochoric transformations at the discrete level is introduced. Numerical examples are proposed to illustrate the properties of viscoelastic waves and nonlinear wave phenomena.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Shear waves in a class of nonlinear viscoelastic solids
    Rajagopal, KR
    Saccomandi, G
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2003, 56 : 311 - 326
  • [32] Nonlinear waves in incompressible viscoelastic Maxwell medium
    Liapidevskii, V. Yu
    Pukhnachev, V. V.
    Tani, A.
    WAVE MOTION, 2011, 48 (08) : 727 - 737
  • [33] Robotic system with viscoelastic element modeled via fractional Zener model
    Cajic, Milan S.
    Lazarevic, Mihailo P.
    Sekara, Tomislav B.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [34] Periodic and solitary waves of the nonlinear Konno–Oono model: generalized methods
    K. Hosseini
    K. Sadri
    E. Hincal
    A. Abbasi
    D. Baleanu
    S. Salahshour
    Optical and Quantum Electronics, 2023, 55
  • [35] Generalized model of nonlinear elastic foundation and longitudinal waves in cylindrical shells
    Zemlyanukhin, A. I.
    Bochkarev, A., V
    Ratushny, A., V
    Chernenko, A., V
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2022, 22 (02): : 196 - 204
  • [36] GENERALIZED NORMAL DISTRIBUTION: A PROBABIL ISTIC MODEL FOR NONLINEAR IRREGULAR WAVES
    洪广文
    China Ocean Engineering, 1987, (01) : 59 - 82
  • [37] A Model for Nonlinear Waves in Space Plasma with Generalized (r, q) Distribution
    Qureshi, M. N. S.
    Shah, K. H.
    Shi, J. K.
    2021 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2021), 2021, : 630 - 635
  • [38] A Hyperbolic Model of Strongly Nonlinear Waves in Two-Layer Flows of an Inhomogeneous Fluid
    Ermishina V.E.
    Journal of Applied and Industrial Mathematics, 2022, 16 (04): : 659 - 671
  • [39] An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation
    Lu, Lyan-Ywan
    Lin, Ging-Long
    Shih, Ming-Hsiang
    ENGINEERING STRUCTURES, 2012, 34 : 111 - 123
  • [40] A NONLINEAR VISCOELASTIC CREEP MODEL
    RAND, JL
    TAPPI JOURNAL, 1995, 78 (07): : 178 - 182