A Novel Multi-Scale Graph Neural Network for Metabolic Pathway Prediction

被引:1
|
作者
Liu, Yuerui [1 ]
Jiang, Yongquan [1 ,2 ,3 ]
Zhang, Fan [1 ]
Yang, Yan [1 ,2 ,3 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[2] Southwest Jiaotong Univ, Artificial Intelligence Res Inst, Chengdu 611756, Peoples R China
[3] Southwest Jiaotong Univ, Engn Res Ctr Sustainable Urban Intelligent Transpo, Minist Educ, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Compounds; Graph neural networks; Drugs; Chemicals; Support vector machines; Training; Metabolic pathway prediction; graph neural network; machine learning;
D O I
10.1109/TCBB.2023.3345647
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Predicting the metabolic pathway classes of compounds in the human body is an important problem in drug research and development. For this purpose, we propose a Multi-Scale Graph Neural Network framework, named MSGNN. The framework includes a subgraph encoder, a feature encoder and a global feature processor, and a graph augmentation strategy is adopted. The subgraph encoder is responsible for extracting the local structural features of the compound, the feature encoder learns the characteristics of the atoms, and the global feature processor processes the information from the pre-training model and the two molecular fingerprints, while the graph augmentation strategy is to expand the train set through a scientific and reasonable method. The experiment result illustrates that the accuracy, precision, recall and F1 metrics of MSGNN reach 98.17%, 94.18%, 94.43% and 94.30%, respectively, which is superior to the similar models we have known. In addition, the ablation experiment demonstrates the indispensability of MSGNN modules.
引用
收藏
页码:178 / 187
页数:10
相关论文
共 50 条
  • [21] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Myeongho Jeon
    Han-Soo Choi
    Junho Lee
    Myungjoo Kang
    Fire Technology, 2021, 57 : 2533 - 2551
  • [22] Epileptic Seizure Prediction: A Multi-Scale Convolutional Neural Network Approach
    Hussein, Ramy
    Ward, Rabab
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [23] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Jeon, Myeongho
    Choi, Han-Soo
    Lee, Junho
    Kang, Myungjoo
    FIRE TECHNOLOGY, 2021, 57 (05) : 2533 - 2551
  • [24] Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting
    Chen L.
    Chen D.
    Shang Z.
    Wu B.
    Zheng C.
    Wen B.
    Zhang W.
    IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (10) : 10748 - 10761
  • [25] Multi-scale graph-transformer network for trajectory prediction of the autonomous vehicles
    Divya Singh
    Rajeev Srivastava
    Intelligent Service Robotics, 2022, 15 : 307 - 320
  • [26] Multi-scale graph-transformer network for trajectory prediction of the autonomous vehicles
    Singh, Divya
    Srivastava, Rajeev
    INTELLIGENT SERVICE ROBOTICS, 2022, 15 (03) : 307 - 320
  • [27] Multi-scale Heat Kernel Graph Network for Graph Classification
    Jhee, Jong Ho
    Yeon, Jeongheun
    Kwak, Yoonshin
    Shin, Hyunjung
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2023, PT II, 2024, 14506 : 270 - 282
  • [28] Multi-scale Heat Kernel Graph Network for Graph Classification
    Jhee, Jong Ho
    Yeon, Jeongheun
    Kwak, Yoonshin
    Shin, Hyunjung
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2024, 14506 LNCS : 270 - 282
  • [29] MGDDI: A multi-scale graph neural networks for drug-drug interaction prediction
    Geng, Guannan
    Wang, Lizhuang
    Xu, Yanwei
    Wang, Tianshuo
    Ma, Wei
    Duan, Hongliang
    Zhang, Jiahui
    Mao, Anqiong
    METHODS, 2024, 228 : 22 - 29
  • [30] A novel multi-scale convolutional neural network for motor imagery classification
    Riyad, Mouad
    Khalil, Mohammed
    Adib, Abdellah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68