Quantum Goos-Hänchen switch in graphene junctions

被引:1
|
作者
Zhang, Z. B. [1 ]
Wang, Rui [1 ,2 ,3 ,4 ]
Wang, Baigeng [1 ,2 ,3 ]
Xing, D. Y. [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 12期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
graphene; quantum transport; p-n junction; Goos-Hanchen effect; BALLISTIC GRAPHENE; DIRAC FERMIONS; ELECTRONS;
D O I
10.1088/1367-2630/ad0eee
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Goos-Hanchen (GH) shift, an interference phenomenon describing the lateral shift of the reflected beam along the interface during total internal reflection, has attracted great interests in the field of quantum transport in two-dimensional materials. In particular, the GH effect generates a novel pseudospin-dependent scattering effect in graphene, which in turn results in an 8e2/h conductance step in the bipolar junctions. Here, we reveal that a barrier region with effective barrier strength chi can greatly enrich the GH effect in graphene junctions. In contrast to the conventional case where the negative shift is allowed only in the p-n junction, the thin barrier enables both negative and positive spatial shifts in pIn and nIn junctions, where I represents the barrier region. More interestingly, the lowest channel degeneracy can be efficiently varied by tuning chi in both the symmetric pInIp and the asymmetric pnIp junctions, leading to a highly controllable switch that switches the conductance between 8e2/h and 4e2/h . These results advance the knowledge of GH effects in electronic materials and suggest experimental avenues for its observation and manipulation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] The relative Fresnel goos-Hänchen phase crossover and its applications in quantum computation
    Carvalho S.A.
    Cruz G.T.C.
    Huguenin J.A.O.
    Balthazar W.F.
    Journal of Modern Optics, 2023, 70 (06) : 390 - 398
  • [22] Goos-Hänchen effect of spin waves at heterochiral interfaces GOOS-HÄNCHEN EFFECT of SPIN WAVES at ... ZHENYU WANG, YUNSHAN CAO, and PENG YAN
    Wang Z.
    Cao Y.
    Yan P.
    Physical Review B, 2019, 100 (06):
  • [23] 消失态与Goos-Hnchen位移研究
    黄志洵
    中国传媒大学学报(自然科学版), 2009, 16 (03) : 1 - 14
  • [24] Phase Control of the Giant Resonant Goos-Hänchen Shift
    A. A. Zharov
    N. A. Zharova
    A. A. Zharov
    JETP Letters, 2020, 112 : 65 - 70
  • [25] Power oscillations induced by the relative Goos-Hänchen phase
    Manoel P. Araújo
    Stefano De Leo
    Gabriel G. Maia
    Maurizio Martino
    The European Physical Journal D, 2019, 73
  • [26] Tunable giant Goos-Hänchen shift in Au-ReS2-graphene heterostructure
    Yan, Yunpeng
    Zha, Mingjie
    Liu, Junxi
    Tu, Jiaxing
    Liu, Zhibo
    OPTICS LETTERS, 2024, 49 (12) : 3484 - 3487
  • [27] Entangled-Beam Reflectometry and Goos-Hänchen Shift
    Le Thien, Q.
    Pynn, R.
    Ortiz, G.
    Physical Review Letters, 2025, 134 (09)
  • [28] Observation of a Giant Goos-Hänchen Shift for Matter Waves
    McKay, S.
    De Haan, V.O.
    Leiner, J.
    Parnell, S.R.
    Dalgliesh, R.M.
    Boeni, P.
    Bannenberg, L.J.
    Le Thien, Q.
    Baxter, D.V.
    Ortiz, G.
    Pynn, R.
    Physical Review Letters, 2025, 134 (09)
  • [29] Theoretical Investigation of Tunable Goos-Hänchen Shifts in a Four-Level Quantum System
    Hossein Jafarzadeh
    Mohammad Payravi
    International Journal of Theoretical Physics, 2018, 57 : 2415 - 2425
  • [30] 古斯-汉欣(Goos-Hnchen)位移研究综述
    鄢腾奎
    梁斌明
    蒋强
    陈家璧
    光学仪器, 2014, 36 (01) : 90 - 94