Torus-Connected Toroids: An Efficient Topology for Interconnection Networks

被引:0
|
作者
Bossard, Antoine [1 ]
机构
[1] Kanagawa Univ, Grad Sch Sci, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan
关键词
node; cluster; dependability; supercomputer; high-performance; graph; routing; diameter; degree; DISJOINT-PATHS; HYPERCUBE; CYCLES; TOFU;
D O I
10.3390/computers12090173
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent supercomputers embody hundreds of thousands of compute nodes, and sometimes millions; as such, they are massively parallel systems. Node interconnection is thus critical to maximise the computing performance, and the torus topology has come out as a popular solution to this crucial issue. This is the case, for example, for the interconnection network of the Fujitsu Fugaku, which was ranked world no. 1 until May 2022 and is the world no. 2 at the time of the writing of this article. Here, the number of dimensions used by the network topology of such torus-based interconnects stays rather low: it is equal to three for the Fujitsu Fugaku's interconnect. As a result, it is necessary to greatly increase the arity of the underlying torus topology to be able to connect the numerous compute nodes involved, and this is eventually at the cost of a higher network diameter. Aiming at avoiding such a dramatic diameter rise, topologies can also combine several layers: such interconnects are called hierarchical interconnection networks (HIN). We propose, in this paper, which extends an earlier study, a novel interconnect topology for massively parallel systems, torus-connected toroids (TCT), whose advantage compared to existing topologies is that while it retains the torus topology for its desirable properties, the TCT network topology combines it with an additional layer, toroids, in order to significantly lower the network diameter. We both theoretically and empirically evaluate our proposal and quantitatively compare it to conventional approaches, which the TCT topology is shown to supersede.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] The topology of gaussian and eisenstein-jacobi interconnection networks
    Department of Mathematics, Oregon State University, Corvallis, OR 97331, United States
    不详
    IEEE Trans Parallel Distrib Syst, 8 (1132-1142):
  • [32] The Topology of Gaussian and Eisenstein-Jacobi Interconnection Networks
    Flahive, Mary
    Bose, Bella
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2010, 21 (08) : 1132 - 1142
  • [33] Research on Topology Structure Analysis of Several Interconnection Networks
    Zhou, Shu-na
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2016), 2016, : 182 - 186
  • [34] Recursive cube of rings: A new topology for interconnection networks
    Sun, YZ
    Cheung, PYS
    Lin, XL
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2000, 11 (03) : 275 - 286
  • [35] Ringed Petersen Spheres Connected Hypercube interconnection networks
    Wang, L
    Chen, ZP
    Jiang, XH
    ICECCS 2005: 10TH IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF COMPLEX COMPUTER SYSTEMS, PROCEEDINGS, 2005, : 127 - 131
  • [36] On the load patterns in Mesh/Torus interconnection networks as packet switching fabrics
    Wang, Hong
    Xu, Du
    Yao, Yao
    Jiang, Guo
    Xu, Shizhong
    Li, Lemin
    2006 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1-4: VOL 1: SIGNAL PROCESSING, 2006, : 1696 - +
  • [37] Efficient multicasting and broadcasting in interconnection networks
    Mannava, PK
    PROCEEDINGS OF THE 39TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I-III, 1996, : 1162 - 1165
  • [38] Area efficient systolic interconnection networks
    Panneerselvam, G
    Bandyopadhyay, S
    Jullien, GA
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1996, 143 (04): : 232 - 238
  • [39] A Novel On-Chip Interconnection Topology for Mesh-Connected Processor Arrays
    Wang, Xiaofang
    IEEE ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2010), 2010, : 450 - 451
  • [40] Reconstructing the topology of sparsely connected dynamical networks
    Napoletani, Domenico
    Sauer, Timothy D.
    PHYSICAL REVIEW E, 2008, 77 (02):