A DYNAMIC MODEL TO SOLVE WEIGHTED LINEAR COMPLEMENTARITY PROBLEMS

被引:1
|
作者
Yu, Dongmei [1 ]
Chen, Cairong [2 ,3 ]
Han, Deren [4 ]
机构
[1] Liaoning Tech Univ, Inst Optimizat & Decis Analyt, Fuxing 123000, Peoples R China
[2] Fujian Normal Univ, Sch Math & Stat, FJKLMAA, Fuzhou 350007, Peoples R China
[3] Fujian Normal Univ, Ctr Appl Math Fujian Prov, Fuzhou 350007, Peoples R China
[4] Beihang Univ, Sch Math Sci, LMIB Minist Educ, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamic model; monotone weighted linear complementarity problem; asymptotic stability; equilibrium point; simulation; INTERIOR-POINT ALGORITHMS; NEURAL-NETWORK; SYSTEM;
D O I
10.3934/jimo.2023015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A dynamic model (DM) is proposed to solve the weighted linear complementarity problem (WLCP). The DM is based on an approximate re-formulation of the WLCP into an unconstrained minimization problem. Under certain hypothesis, we prove that the equilibrium point of the DM is asymp-totically stable and it is an approximate solution of the monotone WLCP. Simulation results are given to show the effectiveness of our method.
引用
收藏
页码:7703 / 7715
页数:13
相关论文
共 50 条
  • [11] A WEIGHTED-PATH-FOLLOWING METHOD FOR SYMMETRIC CONE LINEAR COMPLEMENTARITY PROBLEMS
    Kheirfam, Behrouz
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2014, 4 (02): : 141 - 150
  • [12] Efficient STAR method to solve FE linear dynamic problems
    Cavin, P.
    Gravouil, A.
    Lubrecht, A. A.
    Combescure, A.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 1697 - 1702
  • [13] A Dynamic Method for Weighted Linear Least Squares Problems
    X.-Y. Wu
    J.-L. Xia
    F. Yang
    Computing, 2002, 68 : 375 - 386
  • [14] A dynamic method for weighted linear least squares problems
    Wu, XY
    Xia, JL
    Yang, F
    COMPUTING, 2002, 68 (04) : 375 - 386
  • [15] Procedures to model and solve probabilistic dynamic system problems
    Raoni, Rafael
    Secchi, Argimiro R.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 191
  • [16] Solve dynamic problems
    Antoniewicz, JM
    AVIATION WEEK & SPACE TECHNOLOGY, 1996, 145 (14): : 8 - 8
  • [17] On semidefinite linear complementarity problems
    M. Seetharama Gowda
    Yoon Song
    Mathematical Programming, 2000, 88 : 575 - 587
  • [18] On semidefinite linear complementarity problems
    Gowda, MS
    Song, Y
    MATHEMATICAL PROGRAMMING, 2000, 88 (03) : 575 - 587
  • [19] On the equivalence of linear complementarity problems
    De Schutter, B
    Heemels, WPMH
    Bemporad, A
    OPERATIONS RESEARCH LETTERS, 2002, 30 (04) : 211 - 222
  • [20] Generalized linear complementarity problems
    Math Oper Res, 2 (441):