Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells

被引:0
|
作者
Oh, Sohyeong [1 ]
Yoo, Donggeun [1 ]
Myeonghwan, Kim [2 ]
Jiyong, Park [2 ]
Yeongjin, Choi [2 ]
Park, Kwonpil [1 ]
机构
[1] Sunchon Natl Univ, Dept Chem Engn, 315 Maegok Dong, Sunchon 57922, Jeonnam, South Korea
[2] 303 Pungse Ro,Pungse Myeon, Cheonan Si 31214, Chungnam, South Korea
来源
KOREAN CHEMICAL ENGINEERING RESEARCH | 2023年 / 61卷 / 04期
关键词
PEMFC; Chemical/Mechanical durability; Pt dissolution/deposition; Radical; Membrane degradation; PEMFC MEMBRANE; DEGRADATION; PEFCS;
D O I
10.9713/kcer.2023.61.4.517
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy (DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the electrode.
引用
收藏
页码:517 / 522
页数:6
相关论文
共 50 条
  • [21] Improve the durability of membrane electrode assembly using nanostructured carbons for polymer electrolyte fuel cells
    Xie, Jian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [22] Minichannels in polymer electrolyte membrane fuel cells
    Trabold, TA
    HEAT TRANSFER ENGINEERING, 2005, 26 (03) : 3 - 12
  • [23] A new microporous layer material to improve the performance and durability of polymer electrolyte membrane fuel cells
    Jiang, Yongyi
    Hao, Jinkai
    Hou, Ming
    Zhang, Hongjie
    Li, Xiaojin
    Shao, Zhigang
    Yi, Baolian
    RSC ADVANCES, 2015, 5 (126): : 104095 - 104100
  • [24] A rejuvenation process to enhance the durability of low Pt loaded polymer electrolyte membrane fuel cells
    Langlois, David A.
    Lee, Albert S.
    Macauley, Natalia
    Maurya, Sandip
    Hawley, Marilyn E.
    Yim, Sung Dae
    Kim, Yu Seung
    JOURNAL OF POWER SOURCES, 2018, 396 : 345 - 354
  • [25] Polymer electrolyte membrane technology for fuel cells
    Rajendran, RG
    MRS BULLETIN, 2005, 30 (08) : 587 - 590
  • [26] Electrocatalysts for polymer electrolyte membrane fuel cells
    Song, Yujiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [27] Polymer Electrolyte Membrane Technology for Fuel Cells
    Raj G. Rajendran
    MRS Bulletin, 2005, 30 : 587 - 590
  • [28] Diagnosis of Membrane Chemical Degradation For Health Management of Polymer Electrolyte Fuel Cells
    Low, Derek
    Jackson, Lisa
    Dunnett, Sarah
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [29] Investigation of freeze/thaw durability in polymer electrolyte fuel cells
    Lim, Soo-Jin
    Park, Gu-Gon
    Park, Jin-Soo
    Sohn, Young-Jun
    Yim, Sung-Dae
    Yang, Tae-Hyun
    Hong, Bo Ki
    Kim, Chang-Soo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (23) : 13111 - 13117
  • [30] Accelerated life-time test protocols for polymer electrolyte membrane fuel cells operated at high temperature
    Jeon, Yukwon
    Na, Heeso
    Hwang, Hyoungkwon
    Park, Jeongho
    Hwang, Hojeong
    Shul, Yong-gun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (07) : 3057 - 3067