Direct Numerical Simulation of High-Enthalpy Turbulent Boundary-Layer Flow with Light Gas Injections

被引:2
|
作者
Zhao, Rui [1 ]
Zuo, Zhengxuan [1 ]
Wang, Xiaoyong [2 ]
Yuan, Wu [2 ]
Wen, Chihyung [3 ]
机构
[1] Beijing Inst Technol, Sch Aerospace Engn, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, State Key Lab High Temperature Gas Dynam, Inst Mech, Beijing 100190, Peoples R China
[3] Hong Kong Polytech Univ, Kowloon, Dept Aeronaut & Aviat Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundary Layer Flow; Ablation; Aerothermochemistry; Drag Reduction; Direct Numerical Simulation; Turbulent Boundary Layer;
D O I
10.2514/1.J062942
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Two light gases (He and H2) are, respectively, introduced upstream of a high-enthalpy turbulent flat-plate flow with a boundary-layer edge Mach number of Ma delta=2.25 and temperature of T delta=1800 K. The flow condition refers to the after-shock wave flow on a blunt-body hypersonic vehicle (Duan and Martin, AIAA Journal, Vol. 49, No. 1, 2011, pp. 172-184). Direct numerical simulation results show that the injection of these light gases has little effect on the mean velocity profiles but significantly reduces the near-wall density and skin friction. The separation and fragmentation of near-wall vortical structures are restrained, and the Reynolds shear stress decreases. The injection of inert He inhibits the dissociation reaction of O2 and weakens the chemical nonequilibrium effect, resulting in enhanced mean and fluctuating temperatures. The injection of active H2 promotes the reaction between H2 and O2, which increases the mean temperature but inhibits its fluctuation. After decomposing the mean skin friction into physics-informed contributions, both injections largely reduce the turbulent kinetic energy production term Cf,T and the spatial growth term of the flow, Cf,G, through lowering the near-wall density and reducing vortices.
引用
收藏
页码:956 / 965
页数:10
相关论文
共 50 条
  • [21] Direct Numerical Simulation Database for Impinging Shock Wave/Turbulent Boundary-Layer Interaction
    Pirozzoli, Sergio
    Bernardini, Matteo
    AIAA JOURNAL, 2011, 49 (06) : 1307 - 1312
  • [22] SIMULATION OF FLOW PAST A CUBE IN A TURBULENT BOUNDARY-LAYER
    PATERSON, DA
    APELT, CJ
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1990, 35 (1-3) : 149 - 176
  • [23] Numerical simulation of high-speed turbulent shock/boundary-layer interactions
    Coratekin, T
    Van Keuk, J
    Ballmann, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S915 - S916
  • [24] Experimental investigation of high-enthalpy effects on attachment-line boundary-layer transition
    Fujii, K
    Hornung, HG
    AIAA JOURNAL, 2003, 41 (07) : 1282 - 1291
  • [25] Experimental investigation of high-enthalpy effects on attachment-line boundary-layer transition
    Fujii, K., 1600, American Inst. Aeronautics and Astronautics Inc. (41):
  • [26] Numerical simulation of ramp induced shock wave/boundary-layer interaction in turbulent flow
    Asmelash, H. A.
    Martis, R. R.
    Singh, A.
    AERONAUTICAL JOURNAL, 2013, 117 (1192): : 629 - 638
  • [27] Effects of viscous dissipation on wall heat flux in high-enthalpy turbulent boundary layer
    Li J.
    Liu P.
    Yu M.
    Sun D.
    Dong S.
    Yuan X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (15):
  • [28] Direct numerical simulation of a separated turbulent boundary layer
    Skote, M
    Henningson, DS
    JOURNAL OF FLUID MECHANICS, 2002, 471 : 107 - 136
  • [29] Direct numerical simulation of a separated turbulent boundary layer
    Na, Y
    Moin, P
    JOURNAL OF FLUID MECHANICS, 1998, 370 : 175 - 201
  • [30] Direct numerical simulation of a separated turbulent boundary layer
    Na, Y
    Moin, P
    JOURNAL OF FLUID MECHANICS, 1998, 374 : 379 - 405