Direct Numerical Simulation of High-Enthalpy Turbulent Boundary-Layer Flow with Light Gas Injections

被引:2
|
作者
Zhao, Rui [1 ]
Zuo, Zhengxuan [1 ]
Wang, Xiaoyong [2 ]
Yuan, Wu [2 ]
Wen, Chihyung [3 ]
机构
[1] Beijing Inst Technol, Sch Aerospace Engn, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, State Key Lab High Temperature Gas Dynam, Inst Mech, Beijing 100190, Peoples R China
[3] Hong Kong Polytech Univ, Kowloon, Dept Aeronaut & Aviat Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundary Layer Flow; Ablation; Aerothermochemistry; Drag Reduction; Direct Numerical Simulation; Turbulent Boundary Layer;
D O I
10.2514/1.J062942
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Two light gases (He and H2) are, respectively, introduced upstream of a high-enthalpy turbulent flat-plate flow with a boundary-layer edge Mach number of Ma delta=2.25 and temperature of T delta=1800 K. The flow condition refers to the after-shock wave flow on a blunt-body hypersonic vehicle (Duan and Martin, AIAA Journal, Vol. 49, No. 1, 2011, pp. 172-184). Direct numerical simulation results show that the injection of these light gases has little effect on the mean velocity profiles but significantly reduces the near-wall density and skin friction. The separation and fragmentation of near-wall vortical structures are restrained, and the Reynolds shear stress decreases. The injection of inert He inhibits the dissociation reaction of O2 and weakens the chemical nonequilibrium effect, resulting in enhanced mean and fluctuating temperatures. The injection of active H2 promotes the reaction between H2 and O2, which increases the mean temperature but inhibits its fluctuation. After decomposing the mean skin friction into physics-informed contributions, both injections largely reduce the turbulent kinetic energy production term Cf,T and the spatial growth term of the flow, Cf,G, through lowering the near-wall density and reducing vortices.
引用
收藏
页码:956 / 965
页数:10
相关论文
共 50 条
  • [1] High-Enthalpy Effects on Hypersonic Boundary-Layer Transition
    Wartemann, Viola
    Wagner, Alexander
    Wagnild, Ross
    Pinna, Fabio
    Miro, Fernando Miro
    Tanno, Hideyuki
    Johnson, Heath
    JOURNAL OF SPACECRAFT AND ROCKETS, 2019, 56 (02) : 347 - 356
  • [2] High-enthalpy models for boundary-layer stability and transition
    Miro, Fernando Miro
    Beyak, Ethan S.
    Pinna, Fabio
    Reed, Helen L.
    PHYSICS OF FLUIDS, 2019, 31 (04)
  • [3] Direct numerical simulation of high enthalpy shock wave/turbulent boundary layer interaction
    Liu X.
    Liu P.
    Li C.
    Sun D.
    Yuan X.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (13):
  • [4] Separation length in high-enthalpy shock/boundary-layer interaction
    Davis, JP
    Sturtevant, B
    PHYSICS OF FLUIDS, 2000, 12 (10) : 2661 - 2687
  • [5] Direct numerical simulation of supersonic turbulent boundary layer flow
    Gao, H
    Fu, DX
    Ma, YW
    Li, XL
    CHINESE PHYSICS LETTERS, 2005, 22 (07) : 1709 - 1712
  • [6] Simulation of High-Enthalpy Turbulent Shock Wave/Boundary Layer Interaction Using a RANS Approach
    Davide Ninni
    Francesco Bonelli
    Giuseppe Pascazio
    Aerotecnica Missili & Spazio, 2023, 102 (4): : 323 - 335
  • [7] Heat transfer and friction in a turbulent boundary layer of a high-enthalpy gas with a favorable pressure gradient
    Leont'yev, A.I.
    Petrikevich, B.B.
    Strelkov, V.A.
    Soviet Journal of Applied Physics, 1988, 2 (03):
  • [8] HIGH ENTHALPY HYPERSONIC BOUNDARY-LAYER FLOW
    YANOW, G
    AIAA JOURNAL, 1975, 13 (05) : 557 - 558
  • [9] DIRECT NUMERICAL-SIMULATION OF A 3-DIMENSIONAL TURBULENT BOUNDARY-LAYER
    MOIN, P
    SHIH, TH
    DRIVER, D
    MANSOUR, NN
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (10): : 1846 - 1853
  • [10] Direct Numerical Simulation of Foreign-Gas Film Cooling in Supersonic Boundary-Layer Flow
    Keller, Michael A.
    Kloker, Markus J.
    AIAA JOURNAL, 2017, 55 (01) : 99 - 111