An attention-based temporal convolutional network method for predicting remaining useful life of aero-engine

被引:35
|
作者
Zhang, Qiang [1 ]
Liu, Qiong [1 ]
Ye, Qin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
Remaining useful life prediction; Temporal convolutional network; Attention mechanism; NEURAL-NETWORK;
D O I
10.1016/j.engappai.2023.107241
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Researches on Remaining Useful Life (RUL) prediction of aero-engine could help to make maintenance plans, improve operation reliabilities and reduce maintenance costs. While deep learning methods have been widely used in RUL prediction research, most deep learning-based RUL prediction methods tend to treat input features as equally important. Contributions of different channels and time steps from input features are not considered simultaneously, which will inevitably affect efficiencies and accuracies of RUL prediction. Therefore, a novel deep learning-based RUL prediction method named attention-based temporal convolutional network (ATCN) is proposed in this article. First, an improved self-attention mechanism is used to weight contributions of different time steps from input features. Input features of time steps closely related to RUL are enhanced by the improved self-attention mechanism, which could improve efficiencies of feature extraction in a network. Then, a temporal convolutional network is constructed to capture long-term dependent information and extract feature representations from weighted features of the improved self-attention mechanism. Next, a squeeze-and-excitation mechanism is adopted to weight contributions of different channels from feature representations, which could help to improve prediction accuracies of the network. Finally, a fully connected layer is constructed to fuse weighted features to output RUL values. A commercial modular aero-propulsion system simulation (C-MAPSS) dataset from NASA is applied to verify effects of the proposed method. Performances of the proposed method are compared with those based on different neural network architectures, such as CNN, RNN, LSTM, DCNN, TCN, BiGRU-TSAM, AGCNN and channel attention plus Transformer. Results show that the proposed method could yield results with higher accuracy for RUL prediction of aero-engine than other methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Remaining useful life prediction for aero-engine based on the similarity of degradation characteristics
    Zhang Y.
    Wang C.
    Lu N.
    Jiang B.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (06): : 1414 - 1421
  • [22] Prediction of Remaining Useful Life of Aero-Engine Based on Stacked Autoencoder and DeepAR
    Li H.
    Wang Z.-J.
    Li Z.
    Chen X.
    Li Y.
    Tuijin Jishu/Journal of Propulsion Technology, 2022, 43 (11):
  • [23] Remaining Useful Life Prediction of Aero-Engine Based on PCA-LSTM
    Li, Hao
    Wang, Zhuojian
    Li, Yuan
    Li, Zhe
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 63 - 66
  • [24] An adaptive model with dual-dimensional attention for remaining useful life prediction of aero-engine
    Gan, Fanfan
    Shao, Haidong
    Xia, Baizhan
    KNOWLEDGE-BASED SYSTEMS, 2024, 293
  • [25] Spatial correlation and temporal attention-based LSTM for remaining useful life prediction of turbofan engine
    Tian, Huixin
    Yang, Linzheng
    Ju, Bingtian
    MEASUREMENT, 2023, 214
  • [26] Multiscale Convolutional Attention Network for Predicting Remaining Useful Life of Machinery
    Wang, Biao
    Lei, Yaguo
    Li, Naipeng
    Wang, Wenting
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (08) : 7496 - 7504
  • [27] Prediction of Aero-Engine Remaining Useful Life Combined with Fault Information
    Wang, Chao
    Peng, Zhangming
    Liu, Rong
    MACHINES, 2022, 10 (10)
  • [28] Aero-Engine Remaining Useful Life Estimation Based on Multi-Head Networks
    Ren, Likun
    Qin, Haiqin
    Xie, Zhenbo
    Li, Bianjiang
    Xu, Kejun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [29] LASSO based variable selection for similarity remaining useful life prediction of aero-engine
    Yu Q.
    Li J.
    Dai H.
    Xin F.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (04): : 931 - 938
  • [30] The Research of Civil Aero-Engine Remaining Useful Life Estimation Based on Gaussian Process
    Wu, Rui
    Liu, Chao
    Jiang, Dongxiang
    INTERNATIONAL CONGRESS AND WORKSHOP ON INDUSTRIAL AI 2021, 2022, : 12 - 23