Brownian half-plane excursion and critical Liouville quantum gravity

被引:1
|
作者
Aru, Juhan [1 ]
Holden, Nina [2 ]
Powell, Ellen [3 ,5 ]
Sun, Xin [4 ]
机构
[1] Inst Math, EPFL, EPFL SB MATH, Lausanne, Switzerland
[2] Courant Inst Math Sci New York Univ, New York, NY USA
[3] Univ Durham, Dept Math, Durham, England
[4] Univ Penn, Dept Math, Philadelphia, PA USA
[5] Univ Durham, Dept Math, Sci Site, Upper Mountjoy, Math & Comp Sci Bldg, Durham DH13LE, England
基金
瑞士国家科学基金会;
关键词
CONFORMAL-INVARIANCE; SCALING LIMITS; CLE; SURFACES; CONVERGENCE; BOUNDARY; MATINGS; CONE; SLE;
D O I
10.1112/jlms.12689
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a groundbreaking work, Duplantier, Miller and Sheffield showed that subcritical Liouville quantum gravity (LQG) coupled with Schramm-Loewner evolutions (SLE) can be obtained by gluing together a pair of Brownian motions. In this paper, we study the counterpart of their result in the critical case via a limiting argument. In particular, we prove that as one sends kappa 'down arrow 4$\kappa <^>{\prime } \downarrow 4$ in the subcritical setting, the space-filling SLE kappa '$_{\kappa <^>{\prime }}$ in a disk degenerates to the CLE4$_4$ (where CLE is conformal loop ensembles) exploration introduced by Werner and Wu, along with a collection of independent and identically distributed coin tosses indexed by the branch points of the exploration. Furthermore, in the same limit, we observe that although the pair of initial Brownian motions collapses to a single one, one can still extract two different independent Brownian motions (A,B)$(A,B)$ from this pair, such that the Brownian motion A$A$ encodes the LQG distance from the CLE loops to the boundary of the disk and the Brownian motion B$B$ encodes the boundary lengths of the CLE4$_4$ loops. In contrast to the subcritical setting, the pair (A,B)$(A,B)$ does not determine the CLE-decorated LQG surface. Our paper also contains a discussion of relationships to random planar maps, the conformally invariant CLE4$_4$ metric and growth fragmentations.
引用
收藏
页码:441 / 509
页数:69
相关论文
共 50 条
  • [1] The Liouville equation in a half-plane
    Galvez, Jose A.
    Mira, Pablo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (11) : 4173 - 4187
  • [2] Irregular elastic half-plane gravity problem
    Hasebe, N
    Wang, XF
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2003, 40 (06) : 863 - 875
  • [3] Values of Brownian intersection exponents, I: Half-plane exponents
    Lawler, GF
    Schramm, O
    Werner, W
    ACTA MATHEMATICA, 2001, 187 (02) : 237 - 273
  • [4] SEMIFLEXIBLE POLYMER IN THE HALF-PLANE AND STATISTICS OF THE INTEGRAL OF A BROWNIAN CURVE
    BURKHARDT, TW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22): : L1157 - L1162
  • [5] STRESSES DUE TO GRAVITY IN A NOTCHED ELASTIC HALF-PLANE
    VERRUIJT, A
    INGENIEUR ARCHIV, 1969, 38 (02): : 107 - &
  • [6] Spectral representation of one-dimensional Liouville Brownian motion and Liouville Brownian excursion
    Jin, Xiong
    JOURNAL OF FRACTAL GEOMETRY, 2024, 11 (1-2) : 85 - 109
  • [7] Conformal welding for critical Liouville quantum gravity
    Holden, Nina
    Powell, Ellen
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (03): : 1229 - 1254
  • [8] Watermelons on the half-plane
    Nurligareev, Kh D.
    Povolotsky, A. M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (01):
  • [9] Scattering at the junction formed by a PEC half-plane and a half-plane with anisotropic conductivity
    Sendag, R
    Serbest, AH
    ELECTROMAGNETICS, 2001, 21 (05) : 415 - 434
  • [10] Conformal mapping of a half-plane onto a periodic polygon of half-plane type
    Kolesnikov, Ivan A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2022, (77): : 5 - 16