Balanced multiple q-zeta values

被引:0
|
作者
Burmester, Annika [1 ]
机构
[1] Bielefeld Univ, Fac Math, Bielefeld, Germany
关键词
Multiple zeta values; Multiple q-zeta values; Quasi-shuffle Hopf algebras; Generating series; Bimoulds; ALGEBRA;
D O I
10.1016/j.aim.2024.109487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the balanced multiple q -zeta values. They give a new model for multiple q -zeta values, whose product formula combines the shuffle and stuffle product for multiple zeta values in a natural way. Moreover, the balanced multiple qzeta values are invariant under a very explicit involution. Thus, all relations among the balanced multiple q -zeta values are conjecturally of a very simple shape. Examples of the balanced multiple q -zeta values are the classical Eisenstein series, and they also contain the combinatorial multiple Eisenstein series introduced in [3]. The construction of the balanced multiple q -zeta values is done on the level of generating series. We introduce a general setup relating Hoffman's quasi -shuffle products to explicit symmetries among generating series of words, which gives a clarifying approach to Ecalle's theory of bimoulds. This allows us to obtain an isomorphism between the underlying Hopf algebras of words related to the combinatorial bi-multiple Eisenstein series and the balanced multiple q -zeta values. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:42
相关论文
共 50 条
  • [31] Duality and (q-)multiple zeta values
    Ebrahimi-Fard, Kurusch
    Manchon, Dominique
    Singer, Johannes
    ADVANCES IN MATHEMATICS, 2016, 298 : 254 - 285
  • [32] ON q-ANALOGUES OF MULTIPLE ZETA VALUES
    Singer, Johannes
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2015, 53 (01) : 135 - 165
  • [33] q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series
    Srivastava, HM
    Kim, T
    Simsek, Y
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2005, 12 (02) : 241 - 268
  • [34] Partitions, multiple zeta values and the q-bracket
    Bachmann, Henrik
    van Ittersum, Jan-Willem
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (01):
  • [35] Partitions, multiple zeta values and the q-bracket
    Henrik Bachmann
    Jan-Willem van Ittersum
    Selecta Mathematica, 2024, 30
  • [36] Renormalisation of q-Regularised Multiple Zeta Values
    Kurusch Ebrahimi-Fard
    Dominique Manchon
    Johannes Singer
    Letters in Mathematical Physics, 2016, 106 : 365 - 380
  • [37] Renormalisation of q-Regularised Multiple Zeta Values
    Ebrahimi-Fard, Kurusch
    Manchon, Dominique
    Singer, Johannes
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (03) : 365 - 380
  • [38] The modified q-Genocchi numbers and polynomials with applications to q-zeta functions
    Bagdasaryan, Armen
    Araci, Serkan
    Agyuz, Erkan
    Acikgoz, Mehmet
    AFRIKA MATEMATIKA, 2025, 36 (01)
  • [39] Interpolation of q-analogue of multiple zeta and zeta-star values
    Wakabayashi, Noriko
    JOURNAL OF NUMBER THEORY, 2017, 174 : 26 - 39
  • [40] A note on q-Euler numbers associated with the basic q-zeta function
    Rim, Seog-Hoon
    Kim, Taekyun
    APPLIED MATHEMATICS LETTERS, 2007, 20 (04) : 366 - 369