CROP YIELD PREDICTION: AN OPERATIONAL APPROACH TO CROP YIELD MODELING ON FIELD AND SUBFIELD LEVEL WITH MACHINE LEARNING MODELS

被引:2
|
作者
Helber, Patrick [1 ]
Bischke, Benjamin [1 ]
Habelitz, Peter [1 ]
Sanchez, Cristhian [2 ,3 ]
Pathak, Deepak [2 ,3 ]
Miranda, Miro [2 ,3 ]
Najjar, Hiba [2 ,3 ]
Mena, Francisco [2 ,3 ]
Siddamsetty, Jayanth [2 ]
Arenas, Diego [2 ]
Vollmer, Michaela [2 ]
Charfuelan, Marcela [2 ]
Nuske, Marlon [2 ]
Dengel, Andreas [2 ,3 ]
机构
[1] Vis Impulse GmbH, Kaiserslautern, Germany
[2] German Res Ctr Artificial Intelligence DFKI, Kaiserslautern, Germany
[3] Univ Kaiserslautern Landau, Kaiserslautern, Germany
关键词
Yield Estimation; Yield Forecasting;
D O I
10.1109/IGARSS52108.2023.10283302
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate and reliable crop yield prediction is a complex task. The yield of a crop depends on a variety of factors whose accurate measurement and modeling is challenging. At the same time, reliable yield prediction is highly desirable for farmers to optimize crop production. In this paper, we introduce a modeling based on remote sensing data and Machine Learning models evaluated on a large-scale dataset to address the challenge of an operational crop yield estimation and forecasting on field and subfield level. With our approach, we aim towards a global yield modeling based on Machine Learning models which operates across crop types without the need for crop-specific modeling. We demonstrate that our approach learns to map in-field variability for all studied crop types. Overall, the predictions have an error (RRMSE) of around 15% and an R-2 value of 0.77 at field level.
引用
收藏
页码:2763 / 2766
页数:4
相关论文
共 50 条
  • [21] Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize
    Kuradusenge, Martin
    Hitimana, Eric
    Hanyurwimfura, Damien
    Rukundo, Placide
    Mtonga, Kambombo
    Mukasine, Angelique
    Uwitonze, Claudette
    Ngabonziza, Jackson
    Uwamahoro, Angelique
    AGRICULTURE-BASEL, 2023, 13 (01):
  • [22] Crop Classification and Yield Prediction Using Robust Machine Learning Models for Agricultural Sustainability
    Badshah, Abid
    Alkazemi, Basem Yousef
    Din, Fakhrud
    Zamli, Kamal Z.
    Haris, Muhammad
    IEEE ACCESS, 2024, 12 : 162799 - 162813
  • [23] PREDICTING CROP YIELD WITH MACHINE LEARNING: AN EXTENSIVE ANALYSIS OF INPUT MODALITIES AND MODELS ON A FIELD AND SUB-FIELD LEVEL
    Pathak, Deepak
    Miranda, Miro
    Mena, Francisco
    Sanchez, Cristhian
    Helber, Patrick
    Bischke, Benjamin
    Habelitz, Peter
    Najjar, Hiba
    Siddamsetty, Jayanth
    Arenas, Diego
    Vollmer, Michaela
    Charfuelan, Marcela
    Nuske, Marlon
    Dengel, Andreas
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2767 - 2770
  • [24] A Machine Learning Approach to Predict Crop Yield and Success Rate
    Kale, Shivani S.
    Patil, Preeti S.
    2019 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2019,
  • [25] Crop yield prediction via explainable AI and interpretable machine learning: Dangers of black box models for evaluating climate change impacts on crop yield
    Hu, Tongxi
    Zhang, Xuesong
    Bohrer, Gil
    Liu, Yanlan
    Zhou, Yuyu
    Martin, Jay
    Li, Yang
    Zhao, Kaiguang
    AGRICULTURAL AND FOREST METEOROLOGY, 2023, 336
  • [26] CROP YIELD PREDICTION BASED ON INDIAN AGRICULTURE USING MACHINE LEARNING
    Aravind, T.
    Prieyaa, K. R. Yoghaa
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (04) : 401 - 408
  • [27] Enhancing crop yield prediction through machine learning regression analysis
    Sharma, Seema
    Jain, Anupriya
    Sharma, Sachin
    Whig, Pawan
    INTERNATIONAL JOURNAL OF SUSTAINABLE AGRICULTURAL MANAGEMENT AND INFORMATICS, 2025, 11 (01)
  • [28] Crop Yield Prediction Using Machine Learning Approaches on a Wide Spectrum
    Joshua, S. Vinson
    Priyadharson, A. Selwin Mich
    Kannadasan, Raju
    Khan, Arfat Ahmad
    Lawanont, Worawat
    Khan, Faizan Ahmed
    Rehman, Ateeq Ur
    Ali, Muhammad Junaid
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 5663 - 5679
  • [29] Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms
    Abbas, Farhat
    Afzaal, Hassan
    Farooque, Aitazaz A.
    Tang, Skylar
    AGRONOMY-BASEL, 2020, 10 (07):
  • [30] Machine Learning-based Crop Yield Prediction by Data Augmentation
    Balmumcu, Alper
    Kayabol, Koray
    Erten, Esra
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,