Artificial intelligence-guided discovery of gastric cancer continuum

被引:2
|
作者
Vo, Daniella [1 ]
Ghosh, Pradipta [2 ,3 ,4 ]
Sahoo, Debashis [1 ,2 ,5 ]
机构
[1] Univ Calif San Diego, Dept Pediat, 9500 Gilman Dr,MC 0703,Leichtag Bldg 132, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92037 USA
[3] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA USA
[4] Univ Calif San Diego, Dept Med, La Jolla, CA USA
[5] Univ Calif San Diego, Jacobs Sch Engn, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
关键词
Stomach neoplasms; Computational biology; Systems biology; Transcriptome; Machine learning; GENE-EXPRESSION; SIGNATURE; RISK; METAPLASIA; INDUCTION; SCORE;
D O I
10.1007/s10120-022-01360-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundDetailed understanding of pre-, early and late neoplastic states in gastric cancer helps develop better models of risk of progression to gastric cancers (GCs) and medical treatment to intercept such progression.MethodsWe built a Boolean implication network of gastric cancer and deployed machine learning algorithms to develop predictive models of known pre-neoplastic states, e.g., atrophic gastritis, intestinal metaplasia (IM) and low- to high-grade intestinal neoplasia (L/HGIN), and GC. Our approach exploits the presence of asymmetric Boolean implication relationships that are likely to be invariant across almost all gastric cancer datasets. Invariant asymmetric Boolean implication relationships can decipher fundamental time-series underlying the biological data. Pursuing this method, we developed a healthy mucosa -> GC continuum model based on this approach.ResultsOur model performed better against publicly available models for distinguishing healthy versus GC samples. Although not trained on IM and L/HGIN datasets, the model could identify the risk of progression to GC via the metaplasia -> dysplasia -> neoplasia cascade in patient samples. The model could rank all publicly available mouse models for their ability to best recapitulate the gene expression patterns during human GC initiation and progression.ConclusionsA Boolean implication network enabled the identification of hitherto undefined continuum states during GC initiation. The developed model could now serve as a starting point for rationalizing candidate therapeutic targets to intercept GC progression.
引用
收藏
页码:286 / 297
页数:12
相关论文
共 50 条
  • [11] Artificial Intelligence-Guided Screening for Atrial Fibrillation Using the Electrocardiogram in Sinus Rhythm
    Noseworthy, Peter A.
    Attia, Zachi I.
    Behnken, Emma M.
    Giblon, Rachel E.
    Liu, Sijia
    Gosse, Tara
    Linn, Zachery D.
    Deng, Yihong
    Yin, Jun
    Gersh, Bernard J.
    Graff-Radford, Jonathan
    Rabinstein, Alejandro A.
    Siontis, Konstantinos
    Friedman, Paul
    Yao, Xiaoxi
    CIRCULATION, 2022, 146
  • [12] Artificial intelligence-guided strategies for next-generation biological sequence design
    Zhang, Pengcheng
    Wei, Lei
    Li, Jiaqi
    Wang, Xiaowo
    NATIONAL SCIENCE REVIEW, 2024, 11 (11)
  • [13] Industrialized, Artificial Intelligence-guided Laser Microdissection for Microscaled Proteomic Analysis of the Tumor Microenvironment
    Mitchell, Dave
    Hunt, Allison L.
    Conrads, Kelly A.
    Hood, Brian L.
    Makohon-Moore, Sasha C.
    Rojas, Christine
    Maxwell, G. Larry
    Bateman, Nicholas W.
    Conrads, Thomas P.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2022, (184):
  • [14] Artificial intelligence-guided approach for efficient virtual screening of hits against Schistosoma mansoni
    Moreira-Filho, Jose Teofilo
    Junior Neves, Bruno
    Cajas, Rayssa Araujo
    de Moraes, Josue
    Andrade, Carolina Horta
    FUTURE MEDICINAL CHEMISTRY, 2023, 15 (22) : 2033 - 2050
  • [15] Artificial intelligence-guided mapping of persistent atrial fibrillation: Complementary to or better than the electrophysiologist?
    Rostock, Thomas
    Benz, Alexander P.
    Spittler, Raphael
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2024, 35 (03) : 415 - 417
  • [16] Artificial Intelligence-Guided De Novo Molecular Design Targeting COVID-19
    Srinivasan, Srilok
    Batra, Rohit
    Chan, Henry
    Kamath, Ganesh
    Cherukara, Mathew J.
    Sankaranarayanan, Subramanian K. R. S.
    ACS OMEGA, 2021, 6 (19): : 12557 - 12566
  • [17] RETRACTED: Artificial Intelligence-Guided Subspace Clustering Algorithm for Glioma Images (Retracted Article)
    Zhang, Yong
    Zhou, Yu-mei
    Liao, Zhen-hong
    Liu, Gao-yuan
    Guo, Kai-can
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [18] Initial Experience With Artificial Intelligence-Guided Echocardiography Acquisition in Rural America: Implementation and Quality Assessment
    Kelsey, Michelle
    Dunn, Gary
    Duckworth, Muchelle
    Provencher, Alicia
    Pattison, Brenda
    Adams, David
    Blaha, Michael J.
    Budoff, Matthew J.
    Cheng, Susan
    Fox, Ervin R.
    Judd, Suzanne E.
    Martin, Randolph
    Ramachandran, Vasan S.
    Rhodes, James D.
    Thomas, Yngvil Kloster
    Thomas, James
    Daubert, Melissa A.
    Douglas, Pamela S.
    Bloomfield, Gerald S.
    CIRCULATION, 2022, 146
  • [19] ASSESSMENT OF DIAGNOSTIC ADEQUACY OF ARTIFICIAL INTELLIGENCE-GUIDED POINT OF CARE ECHOCARDIOGRAPHY AMONG ANESTHESIOLOGY TRAINEES
    Tang, T. T.
    Pineda, L. S.
    Park, H.
    Bitterman, L.
    Applegate, R.
    Applegate, P.
    McCabe, M.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2025, 73 (01) : 112 - 115
  • [20] Artificial Intelligence Guided Thermoelectric Materials Design and Discovery
    Han, Guangshuai
    Sun, Yixuan
    Feng, Yining
    Lin, Guang
    Lu, Na
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (08)