Core-shell metallic nanotube arrays for highly sensitive surface-enhanced Raman scattering (SERS) detection

被引:0
|
作者
Chu, Jinn P. [1 ]
Yeh, Yi-Jui [2 ]
Liu, Chih-Yu [1 ]
Yang, Yi-Xiang [1 ,5 ]
Altama, Alfreda Krisna [1 ]
Chang, Ting-Hao [1 ]
Chiang, Wei-Hung [3 ]
Yiu, Pakman [4 ]
Tung, Kuo-Lun [2 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mat Sci & Engn, Taipei 106335, Taiwan
[2] Natl Taiwan Univ, Dept Chem Engn, Taipei 106216, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 106335, Taiwan
[4] Ming Chi Univ Technol, Dept Mat Engn, Taipei 243303, Taiwan
[5] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA
来源
关键词
FABRICATION; NANOPARTICLES; PERFORMANCE;
D O I
10.1116/6.0003055
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Here, we demonstrate the application of highly ordered, periodic Ag/Au core-shell triangle nanotube arrays as an ultrasensitive and low-cost surface-enhanced Raman scattering (SERS) substrate for the first time. The arrays of core-shell nanotube, with an outer diameter of 1.5 mu m, were fabricated using top-down wafer-scale lithography followed by sequential sputter deposition of Ag and Au. The SERS activity of various combinations of core-shell structures was evaluated. It was found that Ag-core nanotubes overlaid with the Au-shell resulted in the highest Raman intensity, where the enhancement factor for R6G as a probe molecule is determined to be 1.38 x 10(7). Meanwhile, the limit of detections for R6G and ketoprofen analytes was evaluated to be 10(-10) and 10(-6) M, respectively. Linear correlations between the SERS signal intensities and logarithmical scale of both analytes in different concentrations were also established, ranging 10(-4)-10(-10) and 10(-2)-10(-6) M for R6G and ketoprofen, respectively. The Raman R6G peak intensity mapping suggests our metal nanotube arrays act as effective plasmonic hotspots and, thus, are useful for SERS sensing applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering
    Xue, Jin-Qun
    Li, Da-Wei
    Qu, Lu-Lu
    Long, Yi-Tao
    ANALYTICA CHIMICA ACTA, 2013, 777 : 57 - 62
  • [22] Synthesis of Core-Shell Surface-Enhanced Raman Tags for Bioimaging
    Liu, Xiangjiang
    Knauer, Maria
    Ivleva, Natalia P.
    Niessner, Reinhard
    Haisch, Christoph
    ANALYTICAL CHEMISTRY, 2010, 82 (01) : 441 - 446
  • [23] Surface-enhanced Raman spectroscopic (SERS) detection with submonolayer nanoparticle arrays
    Osgood, Richard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [24] Facile synthesis of AgPt@Ag core-shell nanoparticles as highly active surface-enhanced Raman scattering substrates
    Zhu, Xiao-Yan
    Wang, Ai-Jun
    Chen, Sai-Sai
    Luo, Xiliang
    Feng, Jiu-Ju
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 260 : 945 - 952
  • [25] Raman and surface-enhanced Raman scattering (SERS) biosensing
    Prochazka, M.
    OPTICAL SENSORS 2013, 2013, 8774
  • [26] Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies
    Tian, Ya-Fei
    Zhou, Wen
    Yin, Bin-Cheng
    Ye, Bang-Ce
    ANALYTICAL METHODS, 2017, 9 (42) : 6038 - 6043
  • [27] Controlled stepwise-synthesis of core-shell Au@MIL-100 (Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection
    Liao, Jia
    Wang, Dongmei
    Liu, Anqi
    Hu, Yuling
    Li, Gongke
    ANALYST, 2015, 140 (24) : 8165 - 8171
  • [28] Surface-enhanced Raman scattering (SERS) of microorganisms
    Zeiri, Leila
    Efrima, Shlomo
    ISRAEL JOURNAL OF CHEMISTRY, 2006, 46 (03) : 337 - 346
  • [29] Fabricating Au-Ag core-shell composite films for surface-enhanced Raman scattering
    Huang, Yingping
    Yang, Yong
    Chen, Zhong
    Li, Xin
    Nogami, Masayuki
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (15) : 5390 - 5393
  • [30] Preparation of Au/Ag core-shell nanoparticles and its surface-enhanced Raman scattering effect
    Ji, XH
    Wang, LY
    Zhang, XT
    Bai, YB
    Li, TJ
    Zhi, ZZ
    Kong, XG
    Liu, YC
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2002, 23 (12): : 2357 - 2359