On the necessity of the inf-sup condition for a mixed finite element formulation

被引:1
|
作者
Bertrand, Fleurianne [1 ]
Boffi, Daniele [2 ,3 ]
机构
[1] TU Chemnitz, Fak Math, Chemnitz, Germany
[2] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[3] Univ Pavia, Pavia, Italy
关键词
Primary; 65N30; Secondary; 65N12;
D O I
10.1093/imanum/drae002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonstandard mixed formulation of the Poisson problem, sometimes known as dual mixed formulation. For reasons related to the equilibration of the flux, we use finite elements that are conforming in $\textbf{H}(\operatorname{\textrm{div}};\varOmega )$ for the approximation of the gradients, even if the formulation would allow for discontinuous finite elements. The scheme is not uniformly inf-sup stable, but we can show existence and uniqueness of the solution, as well as optimal error estimates for the gradient variable when suitable regularity assumptions are made. Several additional remarks complete the paper, shedding some light on the sources of instability for mixed formulations.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 50 条
  • [41] On the regularization and approximation of saddle point problems without inf-sup condition
    Ito, Kazufumi
    Kunisch, Karl
    Peichl, Gunther
    COMPUTATIONAL & APPLIED MATHEMATICS, 2002, 21 (01): : 245 - 274
  • [42] A REDUCED DISCRETE INF-SUP CONDITION IN Lp FOR INCOMPRESSIBLE FLOWS AND APPLICATION
    Chacon Rebollo, Tomas
    Girault, Vivette
    Gomez Marmol, Macarena
    Sanchez Munoz, Isabel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 1219 - 1238
  • [43] The Inf-Sup Condition for the Mapped Qk−Pk−1disc Element in Arbitrary Space Dimensions
    G. Matthies
    L. Tobiska
    Computing, 2002, 69 : 119 - 139
  • [44] Higher-order finite volume methods II: Inf-sup condition and uniform local ellipticity*
    Chen, Zhongying
    Xu, Yuesheng
    Zhang, Yuanyuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 265 : 96 - 109
  • [45] An improved inf-sup condition for the spectral discretization of the Stokes problem in a cylinder
    Bernardi, C
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) : 267 - 280
  • [46] INF-SUP CONDITION FOR SPHERICAL POLYNOMIALS AND RADIAL BASIS FUNCTIONS ON SPHERES
    Sloan, Ian H.
    Wendland, Holger
    MATHEMATICS OF COMPUTATION, 2009, 78 (267) : 1319 - 1331
  • [47] Inf-sup conditions for the mortar spectral element discretization of the Stokes problem
    F. Ben Belgacem
    C. Bernardi
    N. Chorfi
    Y. Maday
    Numerische Mathematik, 2000, 85 : 257 - 281
  • [48] Inf-sup testing of upwind methods
    Bathe, KJ
    Hendriana, D
    Brezzi, F
    Sangalli, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 48 (05) : 745 - 760
  • [49] Inf-sup conditions for finite-difference approximations of the Stokes equations
    Shin, DH
    Strikwerda, JC
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1997, 39 : 121 - 134
  • [50] Inf-sup conditions for the mortar spectral element discretization of the Stokes problem
    Belgacem, FB
    Bernardi, C
    Chorfi, N
    Maday, Y
    NUMERISCHE MATHEMATIK, 2000, 85 (02) : 257 - 281