A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co3O4/reduced graphene oxide nanocomposite

被引:28
|
作者
Hussein, Beshir A. [1 ]
Tsegaye, Abebaw A. [2 ]
Shifera, Getabalew [3 ]
M. Taddesse, Abi [4 ]
机构
[1] Mekdela Amba Univ, Dept Chem, POB 32, Mekane Selam, Ethiopia
[2] Bahir Dar Univ, Dept Chem, POB 79, Bahir Dar, Ethiopia
[3] Mettu Univ, Dept Chem, POB 318, Mettu, Ethiopia
[4] Haramaya Univ, Dept Chem, POB 138, Dire Dawa, Ethiopia
来源
SENSORS & DIAGNOSTICS | 2023年 / 2卷 / 02期
关键词
GLASSY-CARBON ELECTRODE; HYDROTHERMAL SYNTHESIS; ELECTROCATALYTIC ACTIVITY; FACILE SYNTHESIS; NANOPARTICLES; ZNO; FABRICATION; NANOFIBERS; PERFORMANCE; COMPOSITE;
D O I
10.1039/d2sd00183g
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A novel sensitive and selective ZnO/Co3O4/rGO nanocomposite was fabricated using a hydrothermal method and used as a non-enzymatic electrochemical sensor for the detection of glucose. The morphology and structure of the ZnO/Co3O4/rGO composite were characterized using UV-vis spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques. The electrochemical properties of the as-synthesized nanomaterials were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and single potential time base (TB) amperometry. The ZnO/Co3O4/rGO nanocomposite exhibited excellent electrochemical performance with higher catalytic activity, lower working potential (0.55 V), and low charge transfer resistance for the electrochemical oxidation of glucose, which can be attributed to the presence of high conductive reduced graphene oxide sheets on the surface of the electrode. Under optimal conditions, the ZnO/Co3O4/rGO glassy carbon electrode (GCE) modified electrochemical glucose sensor demonstrated a wide linear range (0.015-10 mM), high sensitivity (1551.38 mu A mM(-1) cm(-2)), low detection limit (0.043 mu M) and fast response time (similar to 3 s) to glucose determination. In addition, the ZnO/Co3O4/rGO/GCE sensor was able to detect glucose even in the presence of biologically interfering molecules and chloride ions. The sensor achieved appreciable repeatability, reproducibility, and long-term stability. Moreover, the practical application of the ZnO/Co3O4/rGO/GCE electrochemical sensor is very appropriate for the detection of glucose in real samples for medical diagnostic and food industries, and the results positively agreed with those collected using the spectrophotometric method in the hospital and the glucose label value in food industries.
引用
收藏
页码:347 / 360
页数:14
相关论文
共 50 条
  • [41] Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide-polyaniline-Au nanoparticles nanocomposite
    Chen, Guozhen
    Zheng, Jianbin
    MICROCHEMICAL JOURNAL, 2021, 164
  • [42] Fabrication of Non-enzymatic Electrochemical Glucose Sensor Based on Pd-Mn Alloy Nanoparticles Supported on Reduced Graphene Oxide
    Waqas, Muhammad
    Lan, Jianjun
    Zhang, Xiaoxia
    Fan, Youjun
    Zhang, Panyu
    Liu, Chengzhou
    Jiang, Zhe
    Wang, Xiaoqu
    Zeng, Jianqiang
    Chen, Wei
    ELECTROANALYSIS, 2020, 32 (06) : 1226 - 1236
  • [43] Fabrication of Porous Co3O4 Arrays by a Co-Precipitation Method and it Application as a Non-Enzymatic Glucose Sensor
    Zhang, Jie
    Xia, Ri
    Li, Xianchun
    Xu, Jiasheng
    JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, 2023, 45 (04): : 270 - 278
  • [44] Elemental Cu doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection
    Harry, Micaela
    Chowdhury, Mahabubur
    Cummings, Franscious
    Arendse, Christopher J.
    SENSING AND BIO-SENSING RESEARCH, 2019, 23
  • [45] Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel
    Hoa, Le Thuy
    Sun, Kang Gyu
    Hur, Seung Hyun
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 210 : 618 - 623
  • [46] Development of an electrochemical nanoplatform for non-enzymatic glucose sensing based on Cu/ZnO nanocomposite
    El Golli, Asma
    Echabaane, Mosaab
    Dridi, Cherif
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 280
  • [47] Graphene/PEDOT/Ni-Based electrochemical Non-Enzymatic glucose sensor
    Ma, Qinzheng
    Zhang, Ying
    Wang, Luwei
    Yang, Yushuai
    Wang, Wei
    MICROCHEMICAL JOURNAL, 2024, 206
  • [48] Selective and sensitive phenothiazine sensor based on hexagonal CuO/Co3O4 decorated on reduced graphene oxide catalyst
    Kandeepan, Yamunadevi
    Subramaniyan, Pulikkutty
    Chen, Shen-Ming
    Kumaravel, Saranraj
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 671
  • [49] A highly sensitive non-enzymatic glucose electrochemical sensor based on NiO nanohives
    Thi Oanh Vu
    Thi Xuan Chu
    Duc Hoa Nguyen
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2021, 12 (04)
  • [50] Sensitive Non-Enzymatic Glucose Electrochemical Sensor Based on Electrochemically Synthesized PANI/Bimetallic Oxide Composite
    Khan, Anish
    Khan, Aftab Aslam Parwaz
    Marwani, Hadi M.
    Alotaibi, Maha Moteb
    Asiri, Abdullah M.
    Manikandan, Ayyar
    Siengchin, Suchart
    Rangappa, Sanjay Mavinkere
    POLYMERS, 2022, 14 (15)