LIGHTWEIGHT MULTI-VIEW-GROUP NEURAL NETWORK FOR 3D SHAPE CLASSIFICATION

被引:0
|
作者
Sun, Jiaqi [1 ,2 ]
Niu, Dongmei [1 ,2 ]
Lv, Na [1 ,2 ]
Dou, Wentao [1 ,2 ]
Peng, Jingliang [1 ,2 ]
机构
[1] Jinan Univ, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Peoples R China
[2] Jinan Univ, Sch Informat Sci & Engn, Jinan 250022, Peoples R China
基金
中国国家自然科学基金;
关键词
3D shape classification; lightweight; multi-view-group; neural network;
D O I
10.1109/ICIP49359.2023.10222295
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose LiteMVGNet, a novel lightweight neural network for 3D shape classification. It is based on depth maps generated by multi-view rendering of the corresponding 3D model. LiteMVGNet is designed to be lightweight and effective in various aspects. First, the views and corresponding depth maps are partitioned into groups. Next, depth map features for each group are separately extracted by an adapted MobileNetV2 block. Finally, the extracted group features are fused by an adapted MobileViT block. The views are partitioned by good geometrical semantics and ECAnet is utilized to facilitate extraction of effective features. As demonstrated by experiments, in comparison with the state-of-the-art benchmark models, the proposed one cuts the network parameter count by a third and more and reduces the floating-point operation count by even one or two orders of magnitude. Still, the proposed model yields classification accuracies comparable with the benchmark models.
引用
收藏
页码:3409 / 3413
页数:5
相关论文
共 50 条
  • [21] 3D multi-view convolutional neural networks for lung nodule classification
    Kang, Guixia
    Liu, Kui
    Hou, Beibei
    Zhang, Ningbo
    PLOS ONE, 2017, 12 (11):
  • [22] 3D shape classification and retrieval based on polar view
    Zhou, Yan
    Zeng, Fanzhi
    Qian, Jiechang
    Han, Xintong
    INFORMATION SCIENCES, 2019, 474 : 205 - 220
  • [23] Multi-View Hierarchical Fusion Network for 3D Object Retrieval and Classification
    Liu, An-An
    Hu, Nian
    Song, Dan
    Guo, Fu-Bin
    Zhou, He-Yu
    Hao, Tong
    IEEE ACCESS, 2019, 7 : 153021 - 153030
  • [24] POINTVIEW-GCN: 3D SHAPE CLASSIFICATION WITH MULTI-VIEW POINT CLOUDS
    Mohammadi, Seyed Saber
    Wang, Yiming
    Del Bue, Alessio
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3103 - 3107
  • [25] A lightweight 3D convolutional neural network for deepfake detection
    Liu, Jiarui
    Zhu, Kaiman
    Lu, Wei
    Luo, Xiangyang
    Zhao, Xianfeng
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (09) : 4990 - 5004
  • [26] FuseNet: a multi-modal feature fusion network for 3D shape classification
    Zhao, Xin
    Chen, Yinhuang
    Yang, Chengzhuan
    Fang, Lincong
    VISUAL COMPUTER, 2025, 41 (04): : 2973 - 2985
  • [27] Multi-view based neural network for semantic segmentation on 3D scenes
    Yonghua Lu
    Mingmin Zhen
    Tian Fang
    Science China Information Sciences, 2019, 62
  • [28] An Improved Multi-View Convolutional Neural Network for 3D Object Retrieval
    He, Xinwei
    Bai, Song
    Chu, Jiajia
    Bai, Xiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7917 - 7930
  • [29] A 3D shape classifier with neural network supervision
    Liu, Zhenbao
    Mitani, Jun
    Fukui, Yukio
    Nishihara, Seiichi
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2010, 38 (1-3) : 134 - 143
  • [30] Multi-view based neural network for semantic segmentation on 3D scenes
    Yonghua LU
    Mingmin ZHEN
    Tian FANG
    Science China(Information Sciences), 2019, 62 (12) : 248 - 250