Estimation of wind turbine wakes with generative-adversarial networks

被引:0
|
作者
Bove, M. [1 ]
Lopez, B. [1 ]
Toutouh, J. [2 ]
Nesmachnow, S. [3 ]
Draper, M. [1 ]
机构
[1] Univ Republica, Inst Mecan Fluidos & Ingn Ambiental, Julio Herrera & Reissig 565, Montevideo 11300, Uruguay
[2] Univ Malaga, Inst Tecnol & Ingn Software, Malaga, Spain
[3] Univ Republica, Inst Computac, Julio Herrera & Reissig 565, Montevideo 11300, Uruguay
来源
WAKE CONFERENCE 2023 | 2023年 / 2505卷
基金
欧盟地平线“2020”;
关键词
LARGE-EDDY SIMULATION;
D O I
10.1088/1742-6596/2505/1/012053
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The interaction of the atmospheric boundary layer with wind turbines and among wind turbines in a wind farm is a complex phenomenon. Its analysis is fundamental for wind energy development. In this work, a generative adversarial network has been developed to predict the mean streamwise velocity component at hub height in the wake of a wind turbine based on the mean streamwise velocity two rotor diameters upstream. The dataset used to train and test the model is obtained from Large Eddy Simulations (LES) of a wind farm comprising 15 wind turbines under different inlet conditions. The method is able to predict accurately the mean streamwise velocity in the wake of one wind turbine. When the model is used to predict the mean streamwise velocity at hub height of the whole wind farm based on the inlet condition, the difference between the model predictions and LES results are larger as looking downstream.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] DijetGAN: a Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC
    Riccardo Di Sipio
    Michele Faucci Giannelli
    Sana Ketabchi Haghighat
    Serena Palazzo
    Journal of High Energy Physics, 2019
  • [22] Sequence Generative Adversarial Networks for Wind Power Scenario Generation
    Liang, Junkai
    Tang, Wenyuan
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (01) : 110 - 118
  • [23] A Generative-Adversarial Network-Based Method for Image Synthesis of Diverse Pedestrian
    Li, Bo
    Liu, Zhenyuan
    Xing, Xingyu
    Jia, Tong
    Lu, Yuxiao
    Chen, Junyi
    CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 300 - 309
  • [24] A GENERATOR OF DEEP INELASTIC LEPTON-PROTON SCATTERING BASED ON THE GENERATIVE-ADVERSARIAL
    Lobanov, A. A.
    Berdnikov, Ya. A.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2023, 16 (04): : 181 - 188
  • [25] Numerical modeling of wind turbine wakes
    Sorensen, JN
    Shen, WZ
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 393 - 399
  • [26] Dynamic soaring in wind turbine wakes
    Harzer, Jakob
    De Schutter, Jochem
    Diehl, Moritz
    Meyers, Johan
    EUROPEAN JOURNAL OF CONTROL, 2023, 74
  • [27] Stability of Floating Wind Turbine Wakes
    Kleine, V. G.
    Franceschini, L.
    Carmo, B. S.
    Hanifi, A.
    Henningson, D. S.
    WAKE CONFERENCE 2021, 2021, 1934
  • [28] Wind turbine wakes over hills
    ShaMsoddin, Sina
    Porte-Agel, Fernando
    JOURNAL OF FLUID MECHANICS, 2018, 855 : 671 - 702
  • [29] Numerical computations of wind turbine wakes
    Ivanell, Stefan
    Sorensen, Jens N.
    Henningson, Dan
    WIND ENERGY, 2007, : 259 - +
  • [30] Towards multi of wind turbine wakes
    Pawar, Suraj
    Sharma, Ashesh
    Vijayakumar, Ganesh
    Bay, Chrstopher J.
    Yellapantula, Shashank
    San, Omer
    RENEWABLE ENERGY, 2022, 200 : 867 - 879