Analysis of computer-aided diagnostics in the preoperative diagnosis of ovarian cancer: a systematic review

被引:7
|
作者
Koch, Anna H. [1 ,2 ]
Jeelof, Lara S. [1 ,2 ]
Muntinga, Caroline L. P. [1 ,2 ]
Gootzen, T. A. [1 ,2 ]
van de Kruis, Nienke M. A. [1 ,2 ]
Nederend, Joost [3 ]
Boers, Tim [4 ]
van der Sommen, Fons [4 ]
Piek, Jurgen M. J. [1 ,2 ]
机构
[1] Catharina Hosp, Dept Gynaecol & Obstet, NL-5623 EJ Eindhoven, Noord Brabant, Netherlands
[2] Catharina Hosp, Catharina Canc Inst, NL-5623 EJ Eindhoven, Noord Brabant, Netherlands
[3] Catharina Hosp, Dept Radiol, NL-5623 EJ Eindhoven, Noord Brabant, Netherlands
[4] Univ Technol Eindhoven, Dept Elect Engn, VCA Grp, NL-5600 MB Eindhoven, Noord Brabant, Netherlands
关键词
Diagnosis; Computer-assisted; Machine learning; Ovarian neoplasms; ULTRASOUND IMAGES; AUTOMATED CHARACTERIZATION; TUMOR CHARACTERIZATION; MALIGNANCY INDEX; ROC CURVE; RISK; CLASSIFICATION; PREDICTION; BENIGN; BIAS;
D O I
10.1186/s13244-022-01345-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesDifferent noninvasive imaging methods to predict the chance of malignancy of ovarian tumors are available. However, their predictive value is limited due to subjectivity of the reviewer. Therefore, more objective prediction models are needed. Computer-aided diagnostics (CAD) could be such a model, since it lacks bias that comes with currently used models. In this study, we evaluated the available data on CAD in predicting the chance of malignancy of ovarian tumors.MethodsWe searched for all published studies investigating diagnostic accuracy of CAD based on ultrasound, CT and MRI in pre-surgical patients with an ovarian tumor compared to reference standards.ResultsIn thirty-one included studies, extracted features from three different imaging techniques were used in different mathematical models. All studies assessed CAD based on machine learning on ultrasound, CT scan and MRI scan images. Per imaging method, subsequently ultrasound, CT and MRI, sensitivities ranged from 40.3 to 100%; 84.6-100% and 66.7-100% and specificities ranged from 76.3-100%; 69-100% and 77.8-100%. Results could not be pooled, due to broad heterogeneity. Although the majority of studies report high performances, they are at considerable risk of overfitting due to the absence of an independent test set.ConclusionBased on this literature review, different CAD for ultrasound, CT scans and MRI scans seem promising to aid physicians in assessing ovarian tumors through their objective and potentially cost-effective character. However, performance should be evaluated per imaging technique. Prospective and larger datasets with external validation are desired to make their results generalizable.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Computer-aided Diagnosis of Lung Cancer in Computed Tomography Scans: A Review
    Paulraj, Tharcis
    Chellliah, Kezi Selva Vijila
    CURRENT MEDICAL IMAGING REVIEWS, 2018, 14 (03) : 374 - 388
  • [32] A Review of Computer-Aided Breast Cancer Diagnosis Using Sequential Mammograms
    Loizidou, Kosmia
    Skouroumouni, Galateia
    Nikolaou, Christos
    Pitris, Costas
    TOMOGRAPHY, 2022, 8 (06) : 2874 - 2892
  • [33] Computer-aided diagnosis of liver lesions using CT images: A systematic review
    Nayantara, P. Vaidehi
    Kamath, Surekha
    Manjunath, K. N.
    Rajagopal, K., V
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 127 (127)
  • [34] Computer-aided detection and diagnosis of breast cancer
    Collins, Michael J.
    Hoffmeister, Jeffrey
    Worrell, Steven W.
    SEMINARS IN ULTRASOUND CT AND MRI, 2006, 27 (04) : 351 - 355
  • [35] A Computer-Aided System for Prostate Cancer Diagnosis
    Reda, Islam
    Ghazal, Mohammed
    Shalaby, Ahmed
    Elmogy, Mohammed
    Aboulfotouh, Ahmed
    Abou El-Ghar, Mohamed
    Elmaghraby, Adel
    Keynton, Robert
    El-Baz, Ayman
    2018 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2018, : 616 - 620
  • [36] Computer-aided diagnosis
    Gilbert, FJ
    Lemke, H
    BRITISH JOURNAL OF RADIOLOGY, 2005, 78 : S1 - S2
  • [37] Computer-aided diagnosis of pancreatic and lung cancer
    Alvaro Nunez Diaz, A.
    Luis Lancho Tofe, B.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2008, 1 (01): : 16 - 24
  • [38] Computer-aided detection and diagnosis of breast cancer
    Vyborny, CJ
    Giger, ML
    Nishikawa, RM
    RADIOLOGIC CLINICS OF NORTH AMERICA, 2000, 38 (04) : 725 - +
  • [39] A Computer-Aided System for Prostate Cancer Diagnosis
    Reda, Islam
    Ghazal, Mohammed
    Shalaby, Ahmed
    Elmogy, Mohammed
    Aboulfotouh, Ahmed
    Abou El-Ghar, Mohamed
    Elmaghraby, Adel
    Keynton, Robert
    El-Baz, Ayman
    2018 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2018, : 465 - 469
  • [40] Skin cancer screening: Computer-aided diagnosis
    Dell'Eva, G
    Tumori, LI
    Burroni, M
    Rubegni, P
    Andreassi, L
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2005, 52 (03) : P146 - P146