Overview of Identification Methods of Autoregressive Model in Presence of Additive Noise

被引:2
|
作者
Ivanov, Dmitriy [1 ,2 ]
Yakoub, Zaineb [3 ]
机构
[1] Samara Natl Res Univ, Dept Informat Syst Secur, Samara 443086, Russia
[2] Samara State Univ Transport, Dept Mechatron, Samara 443066, Russia
[3] Univ Gabes, Natl Engn Sch Gabes, Dept Elect Engn, Gabes 6029, Tunisia
关键词
autoregressive model; additive noise; Yule-Walker equations; bias-compensated least squares; Frisch scheme; total least squares; errors-in-variables; prediction error method; maximum likelihood; LEAST-SQUARES; PARAMETER-ESTIMATION; YULE-WALKER; AR PARAMETERS; LINEAR-SYSTEMS; SIGNALS; ALGORITHMS; COEFFICIENTS; CRITERION;
D O I
10.3390/math11030607
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an overview of the main methods used to identify autoregressive models with additive noises. The classification of identification methods is given. For each group of methods, advantages and disadvantages are indicated. The article presents the simulation results of a large number of the described methods and gives recommendations on choosing the best methods.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Nonlinear Kalman filtering in the presence of additive noise
    Kraszewski, Tomasz
    Czopik, Grzegorz
    XI CONFERENCE ON RECONNAISSANCE AND ELECTRONIC WARFARE SYSTEMS, 2017, 10418
  • [42] Interferometric methods for suppressing additive noise
    V. M. Nikitin
    V. A. Sautkin
    V. N. Fomin
    A. B. Tserevitinov
    Physics of Wave Phenomena, 2014, 22 : 111 - 119
  • [43] Adaptation of HMMS in the presence of additive and convolutional noise
    Hirsch, HG
    1997 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, PROCEEDINGS, 1997, : 412 - 419
  • [44] INTENSITY CORRELATIONS IN THE PRESENCE OF ADDITIVE BACKGROUND NOISE
    BARAKAT, R
    OPTICS COMMUNICATIONS, 1979, 28 (01) : 4 - 6
  • [45] FM demodulation in the presence of multiplicative and additive noise
    Ridley, KD
    Jakeman, E
    INVERSE PROBLEMS, 1999, 15 (04) : 989 - 1002
  • [46] Identification of a harmonic signal in the presence of additive noise, an unknown time base distortion, and an averaging effect
    Beelaerts, Veerle
    De Ridder, Fjo
    Schmitz, Nele
    Bauwens, Maite
    Pintelon, Rik
    2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 533 - +
  • [47] Adaptive Autoregressive Model for Reduction of Noise in SPECT
    Takalo, Reijo
    Hytti, Heli
    Ihalainen, Heimo
    Sohlberg, Antti
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015
  • [48] A Seemingly Unrelated Nonparametric Additive Model with Autoregressive Errors
    Wan, Alan T. K.
    You, Jinhong
    Zhang, Riquan
    ECONOMETRIC REVIEWS, 2016, 35 (05) : 894 - 928
  • [49] A METHOD FOR ONLINE IDENTIFICATION OF POWER SYSTEM MODEL PARAMETERS IN THE PRESENCE OF NOISE
    BOLLINGER, KE
    KHALIL, HS
    LI, LCC
    NORUM, WE
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1982, 101 (09): : 3105 - 3111
  • [50] A least-squares based method for autoregressive signals in the presence of noise
    Zheng, WX
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1999, 46 (01): : 81 - 85