Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries

被引:51
|
作者
Zhang, Junbo [1 ,2 ]
Zhang, Haikuo [2 ]
Li, Ruhong [2 ]
Lv, Ling [2 ]
Lu, Di [2 ]
Zhang, Shuoqing [2 ]
Xiao, Xuezhang [2 ]
Geng, Shujiang [1 ]
Wang, Fuhui [1 ]
Deng, Tao [4 ]
Chen, Lixin [2 ,3 ]
Fan, Xiulin [2 ]
机构
[1] Northeastern Univ, Shenyang Natl Lab Mat Sci, Shenyang 110819, Liaoning, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[3] Key Lab Adv Mat & Applicat Batteries Zhejiang Prov, Hangzhou 310013, Zhejiang, Peoples R China
[4] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
来源
基金
中国国家自然科学基金;
关键词
Diluent; Solvation structure; LiF-rich SEI; Li metal batteries; Localized high-concentration electrolyte; FLUORINATED ELECTROLYTES; LITHIUM ELECTRODES; ANODE; EFFICIENCY; LIQUID; INTERPHASES; MORPHOLOGY; ADDITIVES; CHEMISTRY;
D O I
10.1016/j.jechem.2022.11.013
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Passivation by the inorganic-rich solid electrolyte interphase (SEI), especially the LiF-rich SEI, is highly desirable to guarantee the durable lifespan of Li metal batteries (LMBs). Here, we report a diluent with the capability to facilitate the formation of LiF-rich SEI while avoiding the excess consumption of Li salts. Dissimilar to most of reported inert diluents, heptafluoro-1-methoxypropane (HM) is firstly demon- strated to cooperate with the decomposition of anions to generate LiF-rich SEI via releasing F - containing species near Li surface. The designed electrolyte consisting of 1.8 M LiFSI in the mixture of 1,2-dimethoxyethane (DME)/HM (2:1 by vol.) achieves excellent compatibility with both Li metal anodes (Coulombic efficiency ti 99.8%) and high-voltage cathodes (4.4 V LiNi0.8Mn0.1Co0.1O2 (NMC811) and 4.5 V LiCoO2 (LCO) vs Li+/Li). The 4.4 V Li (20 lm)||NMC811 (2.5 mA h cm-2) and 4.5 V Li (20 lm)||LCO (2.5 mA h cm-2) cells achieve capacity retentions of 80% over 560 cycles and 80% over 505 cycles, respec- tively. Meanwhile, the anode-free pouch cell delivers an energy density of-293 W h kg-1 initially and retains 70% of capacity after 100 deep cycles. This work highlights the critical impact of diluent on the SEI formation, and opens up a new direction for designing desirable interfacial chemistries to enable high-performance LMBs.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 40 条
  • [31] Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries
    Shin, Jaewook
    Kim, Tae-Hee
    Lee, Yongju
    Cho, EunAe
    ENERGY STORAGE MATERIALS, 2020, 25 : 764 - 781
  • [32] Ensemble Design of Electrode-Electrolyte Interfaces: Toward High-Performance Thin-Film All-Solid-State Li-Metal Batteries
    Xiao, Cheng-Fan
    Kim, Jong Heon
    Cho, Su-Ho
    Park, Yun Chang
    Kim, Min Jung
    Chung, Kwun-Bum
    Yoon, Soon-Gil
    Jung, Ji-Won
    Kim, Il-Doo
    Kim, Hyun-Suk
    ACS NANO, 2021, 15 (03) : 4561 - 4575
  • [33] Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries (vol 17, pg 768, 2022)
    Lin, Ruoqian
    He, Yubin
    Wang, Chunyang
    Zou, Peichao
    Hu, Enyuan
    Yang, Xiao-Qing
    Xu, Kang
    Xin, Huolin L.
    NATURE NANOTECHNOLOGY, 2022, 17 (09) : 1024 - 1024
  • [34] Realization of high-performance room temperature solid state Li-metal batteries using a LiF/PVDF-HFP composite membrane for protecting an LATP ceramic electrolyte
    Ghafari, Mahmoud
    Sanaee, Zeinab
    Babaei, Alireza
    Mohajerzadeh, Shams
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (14) : 7605 - 7616
  • [35] Lithium-Rich Li2TiS3 Cathode Enables High-Energy Sulfide All-Solid-State Lithium Batteries
    Hu, Yaqi
    Sun, Zhen
    Zhang, Zongliang
    Liu, Siliang
    He, Fangbo
    Liu, Yang
    Zhuang, Zhi
    Liu, Fangyang
    ADVANCED ENERGY MATERIALS, 2023, 13 (05)
  • [36] High-performance graphite||Li4Ti5O12 dual-ion full batteries enabled by in-situ formation of LiF-rich solid electrolyte interphase on Li4Ti5O12 anode
    Zhu, Hekang
    Dong, Shuyu
    Zhao, Yu
    Pui-Kit, Lee
    Yu, Denis Y. W.
    JOURNAL OF POWER SOURCES, 2024, 592
  • [37] Chemical compatibility at the interface of garnet-type Ga-LLZO solid electrolyte and high-energy Li-rich layered oxide cathode for all-solid-state batteries
    Timusheva, Natalia B.
    Golubnichiy, Alexander A.
    Morozov, Anatolii V.
    Burov, Arseniy S.
    Aksyonov, Dmitry A.
    Savina, Aleksandra A.
    Markopolskii, Roman G.
    Abakumov, Artem M.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [38] Toward high performance all-solid-state lithium or sodium metal batteries: Potential application on Li/Na-rich antiperovskites (LiRAPs/NaRAPs) electrolyte for energy storage
    Bi, Xiaolong
    Mu, Wenning
    Meng, Junjin
    Huang, Yifan
    Lei, Xuefei
    Wang, Qing
    Luo, Shaohua
    ENERGY STORAGE MATERIALS, 2024, 73
  • [39] Confining nonflammable liquid in solid polymer electrolyte to enable nickel-rich cathode-based 4.2 V high-energy solid-state lithium-metal and lithium-ion batteries
    Yee, Minha
    An, Kihun
    Nguyen, Dan-Thien
    Yun, Hyea Won
    Park, Jinkyu
    Suk, Jungdon
    Song, Seung-Wan
    MATERIALS TODAY ENERGY, 2022, 24
  • [40] Fast ion conduction assisted by covalent organic frameworks in poly (ethylene oxide)-based composite electrolyte enabling high-energy and strong-stability all-solid-state lithium metal batteries
    Chen, Jing
    Zhang, Jing
    Wang, Xiaodong
    Fu, Ning
    Yang, Zhenglong
    ELECTROCHIMICA ACTA, 2023, 449