Quantitative myelin imaging with MRI and PET: an overview of techniques and their validation status

被引:31
|
作者
van der Weijden, Chris W. J. [1 ,10 ]
Biondetti, Emma [2 ]
Gutmann, Ingomar W. [3 ]
Dijkstra, Hildebrand [4 ]
McKerchar, Rory [5 ]
Faria, Daniele de Paula [6 ]
de Vries, Erik F. J. [1 ]
Meilof, Jan F. [7 ,8 ]
Dierckx, Rudi A. J. O. [1 ]
Prevost, Valentin H. [9 ]
Rauscher, Alexander [5 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, NL-9713 GZ Groningen, Netherlands
[2] G Dannunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Dept Neurosci Imaging & Clin Sci, I-66100 Chieti, Italy
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, NL-9713 GZ Groningen, Netherlands
[5] Univ British Columbia, Dept Pediat, Vancouver, BC V6T 1Z4, Canada
[6] Univ Sao Paulo, Dept Radiol & Oncol, Fac Med, BR-05403911 Sao Paulo, Brazil
[7] Univ Groningen, Univ Med Ctr Groningen, Dept Biomed Sci Cells & Syst, NL-9713 GZ Groningen, Netherlands
[8] Martini Ziekenhuis, Dept Neurol, NL-9728 NT Groningen, Netherlands
[9] Canon Med Syst Corp, CT MR Planning Div Dept, Tochigi 3248550, Japan
[10] Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Hanzepl 1, NL-9713 GZ Groningen, Netherlands
关键词
brain maturation; demyelination; MRI; myelin imaging; PET; INHOMOGENEOUS MAGNETIZATION-TRANSFER; MULTIPLE-SCLEROSIS LESIONS; APPEARING WHITE-MATTER; HIGH-FIELD MRI; NEURITE ORIENTATION DISPERSION; POSITRON-EMISSION-TOMOGRAPHY; MULTICOMPONENT T2 RELAXATION; SUSCEPTIBILITY MAPPING QSM; IN-VIVO QUANTIFICATION; CUPRIZONE MOUSE MODEL;
D O I
10.1093/brain/awac436
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Myelin is the protective sheath wrapped around axons, consisting of a phospholipid bilayer with water between the wraps. The measurement of damage to the myelin sheaths, the evaluation of the efficacy of therapies aiming to promote remyelination and monitoring the degree of brain maturation in children all require non-invasive quantitative myelin imaging methods. To date, various myelin imaging techniques have been developed. Five different MRI approaches can be distinguished based on their biophysical principles: (i) imaging of the water between the lipid bilayers directly (e.g. myelin water imaging); (ii) imaging the non-aqueous protons of the phospholipid bilayer directly with ultra-short echo-time techniques; (iii) indirect imaging of the macromolecular content (e.g. magnetization transfer; inhomogeneous magnetization transfer); (iv) mapping of the effects of the myelin sheath's magnetic susceptibility on the MRI signal (e.g. quantitative susceptibility mapping) and (v) mapping of the effects of the myelin sheath on water diffusion. Myelin imaging with PET uses radioactive molecules with high affinity to specific myelin components, in particular myelin basic protein. This review aims to give an overview of the various myelin imaging techniques, their biophysical principles, image acquisition, data analysis and their validation status. van der Weijden et al. review myelin imaging techniques and discuss their differences on a biophysical level. They conclude that the most promising techniques are quantitative susceptibility mapping and inhomogeneous magnetization transfer for MRI, and C-11-MeDAS for PET.
引用
收藏
页码:1243 / 1266
页数:24
相关论文
共 50 条
  • [31] Towards quantitative small-animal imaging on hybrid PET/CT and PET/MRI systems
    Amirrashedi, Mahsa
    Zaidi, Habib
    Ay, Mohammad Reza
    CLINICAL AND TRANSLATIONAL IMAGING, 2020, 8 (04) : 243 - 263
  • [32] Towards quantitative small-animal imaging on hybrid PET/CT and PET/MRI systems
    Mahsa Amirrashedi
    Habib Zaidi
    Mohammad Reza Ay
    Clinical and Translational Imaging, 2020, 8 : 243 - 263
  • [33] Overview of rapid MRI techniques
    Hennig, J
    ULTRAFAST MAGNETIC RESONANCE IMAGING IN MEDICINE, 1999, 1192 : 35 - 37
  • [34] Validation and implementation of quantitative DCE-MRI imaging for radiation oncology
    Van Zijp, H. M.
    Griffioen, H.
    Philippens, M. E. P.
    Van den Berg, C. A. T.
    Van Tilborg, G.
    Franken, S. P. G.
    De Kruijf, W. J. M.
    RADIOTHERAPY AND ONCOLOGY, 2014, 111 : S259 - S260
  • [35] Advances in fluorescence imaging techniques for myelin
    Pan, Xiu
    Li, Xin
    Liu, Kun -Mei
    Chen, Yuan
    Wang, Jia-Li
    Guo, Bing-Wei
    Feng, Shun
    Wu, Ming-Yu
    COORDINATION CHEMISTRY REVIEWS, 2024, 518
  • [36] Breast cancer - II - Overview of the current status of PET in breast cancer imaging
    Wahl, RL
    QUARTERLY JOURNAL OF NUCLEAR MEDICINE, 1998, 42 (01): : 1 - 7
  • [37] Development and validation of techniques for quantitative clinical assessment of myocardial infarction by electrocardiography and MRI
    Engblom, H
    Wagner, GS
    Setser, RM
    Selvester, RHS
    Billgren, T
    Kasper, JM
    Maynard, C
    Arheden, H
    White, RD
    JOURNAL OF ELECTROCARDIOLOGY, 2002, 35 : 203 - 204
  • [38] Minisymposium: Pet imaging - Overview
    Kaste, SC
    PEDIATRIC RADIOLOGY, 2004, 34 (03) : 189 - 189
  • [39] Cardiac motion and spillover correction for quantitative PET imaging using dynamic MRI
    Marchesseau, Stephanie
    Totman, John J.
    Fadil, Hakim
    Leek, Francesca A. A.
    Chaal, Jasper
    Richards, Mark
    Chan, Mark
    Reilhac, Anthonin
    MEDICAL PHYSICS, 2019, 46 (02) : 726 - 737
  • [40] Advanced Imaging Techniques in the Diagnosis of Nonlesional Epilepsy: MRI, MRS, PET, and SPECT
    Pardoe, Heath
    Kuzniecky, Ruben
    EPILEPSY CURRENTS, 2014, 14 (03) : 121 - 124