Lie symmetry analysis for fractional evolution equation with ζ-Riemann-Liouville derivative

被引:0
|
作者
Soares, Junior C. A. [1 ,2 ]
Costa, Felix S. [2 ]
Sousa, J. Vanterler C. [2 ]
机构
[1] Mato Grosso State Univ, Dept Math, Rua A S-N, BR-78390000 Barra Do Bugres, Brazil
[2] DEMATI UEMA, PPGEA UEMA, Dept Math, Aerosp Engn, BR-65054 Sao Luis, MA, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 04期
关键词
Prolongation formula; Invariance condition; zeta-Leibniz-type rule; Fractional equations; Lie group; RULE;
D O I
10.1007/s40314-024-02685-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the application of Lie group theory analysis with zeta-Riemann-Liouville fractional derivative (zeta-RLFD, for short) detailing the construction of infinitesimal prolongation to obtain Lie symmetries. In addition, it addresses the invariance condition without necessarily imposing that the lower limit of the fractional integral is fixed. We find an expression that expands the knowledge regarding the study of exact solutions for fractional differential equations. We apply the Leibniz-type rule for the derivative operator in question to build the prolongation. At last, we calculate the Lie symmetries of the generalized Burgers equation and fractional porous medium equation.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE WITH VARYING ARGUMENTS
    Ravikumar, N.
    Latha, S.
    MATEMATICKI VESNIK, 2012, 64 (01): : 17 - 23
  • [22] Stability analysis of fractional differential system with Riemann-Liouville derivative
    Qian, Deliang
    Li, Changpin
    Agarwal, Ravi P.
    Wong, Patricia J. Y.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 862 - 874
  • [23] ANALYSIS OF NONLINEAR FRACTIONAL DIFFUSION EQUATIONS WITH A RIEMANN-LIOUVILLE DERIVATIVE
    Ngoc, Tran bao
    Tuan, Nguyen Huy
    Sakthivel, R.
    O'Regan, Donal
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (02): : 439 - 455
  • [24] Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative
    Le Dinh Long
    Ho Duy Binh
    Kumar, Devendra
    Nguyen Hoang Luc
    Nguyen Huu Can
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6194 - 6216
  • [25] Regularization of inverse source problem for fractional diffusion equation with Riemann-Liouville derivative
    Liu, Songshu
    Sun, Fuquan
    Feng, Lixin
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [26] Auxiliary Equation Method for Fractional Differential Equations with Modified Riemann-Liouville Derivative
    Akbulut, Arzu
    Kaplan, Melike
    Bekir, Ahmet
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2016, 17 (7-8) : 413 - 420
  • [27] BOUNDARY VALUE PROBLEM FOR PARTIAL DIFFERENTIAL EQUATION WITH FRACTIONAL RIEMANN-LIOUVILLE DERIVATIVE
    Repin, Oleg Alexandrovich
    UFA MATHEMATICAL JOURNAL, 2015, 7 (03): : 67 - 72
  • [28] Boundary value problem for the heat equation with a load as the Riemann-Liouville fractional derivative
    Pskhu, A., V
    Kosmakova, M. T.
    Akhmanova, D. M.
    Kassymova, L. Zh
    Assetov, A. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 74 - 82
  • [29] On a Generic Fractional Derivative Associated with the Riemann-Liouville Fractional Integral
    Luchko, Yuri
    AXIOMS, 2024, 13 (09)
  • [30] A Fractional Boundary Value Problem with φ-Riemann-Liouville Fractional Derivative
    Ji, Dehong
    Yang, Yitao
    IAENG International Journal of Applied Mathematics, 2020, 50 (04) : 1 - 5