FEDRESOURCE: Federated Learning Based Resource Allocation in Modern Wireless Networks

被引:0
|
作者
Satheesh, P. G. [1 ]
Sasikala, T. [2 ]
机构
[1] Sathyabama Inst Sci & Technol, Chennai, Tamil Nadu, India
[2] Sathyabama Inst Sci & Technol, Dept Comp Sci & Engn, Chennai, Tamil Nadu, India
关键词
Deep reinforcement learning; federated learning; resource allocation; butterfly optimization technique;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep reinforcement learning can effectively deal with resource allocation (RA) in wireless networks. However, more complex networks can have slower learning speeds, and a lack of network adaptability requires new policies to be learned for newly introduced systems. To address these issues, a novel federated learning-based resource allocation (FEDRESOURCE) has been proposed in this paper which efficiently performs RA in wireless networks. The proposed FEDRESOURCE technique uses federated learning (FL) which is a ML technique that shares the DRL-based RA model between distributed systems and a cloud server to describe a policy. The regularized local loss that occurs in the network will be reduced by using a butterfly optimization technique, which increases the convergence of the FL algorithm. The suggested FL framework speeds up policy learning and allows for adoption by employing deep learning and the optimization technique. Experiments were conducted using a Python-based simulator and detailed numerical results for the wireless RA sub-problems. The theoretical results of the novel FEDRESOURCE algorithm have been validated in terms of transmission power, convergence of algorithm, throughput, and cost. The proposed FEDRESOURCE technique achieves maximum transmit power up to 27%, 55%, and 68% energy efficiency compared to Scheduling policy, Asynchronous FL framework, and Heterogeneous computation schemes respectively. The proposed FEDRESOURCE technique can increase discrimination accuracy by 1.7%, 1.2%, and 0.78% compared to the scheduling policy framework, Asynchronous FL framework, and Heterogeneous computation schemes respectively.
引用
收藏
页码:1023 / 1030
页数:8
相关论文
共 50 条
  • [21] POWER ALLOCATION FOR WIRELESS FEDERATED LEARNING USING GRAPH NEURAL NETWORKS
    Li, Boning
    Swami, Ananthram
    Segarra, Santiago
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5243 - 5247
  • [22] Task Offloading and Resource Allocation for Fog Computing in NG Wireless Networks: A Federated Deep Reinforcement Learning Approach
    Su, Chan
    Wei, Jianguo
    Lin, Deyu
    Kong, Linghe
    Guan, Yong Liang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 6802 - 6816
  • [23] On Dynamic Resource Allocation for Blockchain Assisted Federated Learning over Wireless Channels
    Deng, Xiumei
    Li, Jun
    Shi, Long
    Wang, Zhe
    Wang, Jessie Hui
    Wang, Taotao
    IEEE CONGRESS ON CYBERMATICS / 2021 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS (ITHINGS) / IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) / IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) / IEEE SMART DATA (SMARTDATA), 2021, : 306 - 313
  • [24] Bandwidth Allocation for Multiple Federated Learning Services in Wireless Edge Networks
    Xu, Jie
    Wang, Heqiang
    Chen, Lixing
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (04) : 2534 - 2546
  • [25] Federated Learning Over Wireless Channels: Dynamic Resource Allocation and Task Scheduling
    Chu, Shunfeng
    Li, Jun
    Wang, Jianxin
    Wang, Zhe
    Ding, Ming
    Zhang, Yijin
    Qian, Yuwen
    Chen, Wen
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (04) : 1910 - 1924
  • [26] Blockchain-Aided Wireless Federated Learning: Resource Allocation and Client Scheduling
    Li, Jun
    Zhang, Weiwei
    Wei, Kang
    Chen, Guangji
    Shu, Feng
    Chen, Wen
    Jin, Shi
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 34349 - 34363
  • [27] Joint Resource Allocation and Scheduling for Wireless Power Transfer Aided Federated Learning
    Song, Yuxiao
    Ji, Guangyuan
    Dai, Minghui
    Wu, Yuan
    Qian, Liping
    Lin, Bin
    2022 31ST WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2022, : 155 - 160
  • [28] Joint Device Scheduling and Resource Allocation for Latency Constrained Wireless Federated Learning
    Shi, Wenqi
    Zhou, Sheng
    Niu, Zhisheng
    Jiang, Miao
    Geng, Lu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (01) : 453 - 467
  • [29] Heterogeneous Computation and Resource Allocation for Wireless Powered Federated Edge Learning Systems
    Feng, Jie
    Zhang, Wenjing
    Pei, Qingqi
    Wu, Jinsong
    Lin, Xiaodong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (05) : 3220 - 3233
  • [30] Federated Learning in Unreliable and Resource-Constrained Cellular Wireless Networks
    Salehi, Mohammad
    Hossain, Ekram
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (08) : 5136 - 5151