A Lightweight Cherry Tomato Maturity Real-Time Detection Algorithm Based on Improved YOLOV5n

被引:19
|
作者
Wang, Congyue [1 ,2 ]
Wang, Chaofeng [1 ,2 ]
Wang, Lele [2 ]
Wang, Jing [1 ,2 ]
Liao, Jiapeng [1 ,2 ]
Li, Yuanhong [1 ,2 ]
Lan, Yubin [1 ,2 ,3 ,4 ]
机构
[1] South China Agr Univ, Coll Elect Engn, Coll Artificial Intelligence, Guangzhou 510642, Peoples R China
[2] South China Agr Univ, Natl Ctr Int Collaborat Res Precis Agr Aviat Pesti, Guangzhou 510642, Peoples R China
[3] South China Agr Univ, Guangdong Lab Lingnan Modern Agr, Guangzhou 510642, Peoples R China
[4] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 08期
关键词
precision agriculture; YOLOv5; cherry tomato; maturity detection; CA; WIoU; COLOR;
D O I
10.3390/agronomy13082106
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To enhance the efficiency of mechanical automatic picking of cherry tomatoes in a precision agriculture environment, this study proposes an improved target detection algorithm based on YOLOv5n. The improvement steps are as follows: First, the K-means++ clustering algorithm is utilized to update the scale and aspect ratio of the anchor box, adapting it to the shape characteristics of cherry tomatoes. Secondly, the coordinate attention (CA) mechanism is introduced to expand the receptive field range and reduce interference from branches, dead leaves, and other backgrounds in the recognition of cherry tomato maturity. Next, the traditional loss function is replaced by the bounding box regression loss with dynamic focusing mechanism (WIoU) loss function. The outlier degree and dynamic nonmonotonic focusing mechanism are introduced to address the boundary box regression balance problem between high-quality and low-quality data. This research employs a self-built cherry tomato dataset to train the target detection algorithms before and after the improvements. Comparative experiments are conducted with YOLO series algorithms. The experimental results indicate that the improved model has achieved a 1.4% increase in both precision and recall compared to the previous model. It achieves an average accuracy mAP of 95.2%, an average detection time of 5.3 ms, and a weight file size of only 4.4 MB. These results demonstrate that the model fulfills the requirements for real-time detection and lightweight applications. It is highly suitable for deployment in embedded systems and mobile devices. The improved model presented in this paper enables real-time target recognition and maturity detection for cherry tomatoes. It provides rapid and accurate target recognition guidance for achieving mechanical automatic picking of cherry tomatoes.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] R-YOLOv5: A Lightweight Rotational Object Detection Algorithm for Real-Time Detection of Vehicles in Dense Scenes
    Li, Zhengwei
    Pang, Chengxin
    Dong, Chenhang
    Zeng, Xinhua
    IEEE ACCESS, 2023, 11 : 61546 - 61559
  • [42] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [43] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Xinpeng Yuan
    Zhibo Fu
    Bowen Zhang
    Zhengkun Xie
    Rui Gan
    Scientific Reports, 14
  • [44] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Yuan, Xinpeng
    Fu, Zhibo
    Zhang, Bowen
    Xie, Zhengkun
    Gan, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [45] Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
    Sun, Yu
    Zhang, Dongwei
    Guo, Xindong
    Yang, Hua
    PLANTS-BASEL, 2023, 12 (17):
  • [46] An Improved YOLOv5-Based Lightweight Submarine Target Detection Algorithm
    Mei, Likun
    Chen, Zhili
    SENSORS, 2023, 23 (24)
  • [47] A Lightweight Military Target Detection Algorithm Based on Improved YOLOv5
    Du, Xiuli
    Song, Linkai
    Lv, Yana
    Qiu, Shaoming
    ELECTRONICS, 2022, 11 (20)
  • [48] Pig Counting Algorithm Based on Improved YOLOv5n Model with Multiscene and Fewer Number of Parameters
    Wang, Yongsheng
    Yang, Duanli
    Chen, Hui
    Wang, Lianzeng
    Gao, Yuan
    ANIMALS, 2023, 13 (21):
  • [49] An improved lightweight object detection algorithm for YOLOv5
    Luo, Hao
    Wei, Jiangshu
    Wang, Yuchao
    Chen, Jinrong
    Li, Wujie
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [50] Improved YOLOv5 Lightweight Mask Detection Algorithm
    Liu, Chonghao
    Pan, Lihu
    Yang, Fan
    Zhang, Rui
    Computer Engineering and Applications, 2023, 59 (07) : 232 - 241