Neighbor interaction-based personalised transfer for cross-domain recommendation

被引:0
|
作者
Sun, Kelei [1 ]
Wang, Yingying [1 ]
He, Mengqi [1 ]
Zhou, Huaping [1 ]
Zhang, Shunxiang [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Comp Sci & Engn, Huainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-domain recommendation; data sparsity; attention mechanism; meta-learning; cold-start users; NAMED ENTITY RECOGNITION; ATTENTION NETWORK; INFORMATION;
D O I
10.1080/09540091.2023.2263664
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mapping-based cross-domain recommendation (CDR) can effectively tackle the cold-start problem in traditional recommender systems. However, existing mapping-based CDR methods ignore data-sparse users in the source domain, which may impact the transfer efficiency of their preferences. To this end, this paper proposes a novel method named Neighbor Interaction-based Personalized Transfer for Cross-Domain Recommendation (NIPT-CDR). This proposed method mainly contains two modules: (i) an intra-domain item supplementing module and (ii) a personalised feature transfer module. The first module introduces neighbour interactions to supplement the potential missing preferences for each source domain user, particularly for those with limited observed interactions. This approach comprehensively captures the preferences of all users. The second module develops an attention mechanism to guide the knowledge transfer process selectively. Moreover, a meta-network based on users' transferable features is trained to construct personalised mapping functions for each user. The experimental results on two real-world datasets show that the proposed NIPT-CDR method achieves significant performance improvements compared to seven baseline models. The proposed model can provide more accurate and personalised recommendation services for cold-start users.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Cross-domain Recommendation with Consistent Knowledge Transfer by Subspace Alignment
    Zhang, Qian
    Lu, Jie
    Wu, Dianshuang
    Zhang, Guangquan
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2018, PT II, 2018, 11234 : 67 - 82
  • [22] Semantic clustering-based cross-domain recommendation
    Kumar, Anil
    Kumar, Nitesh
    Hussain, Muzammil
    Chaudhury, Santanu
    Agarwal, Sumeet
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 137 - 141
  • [23] A Cross-Domain Recommendation Algorithm Based On Graph Optimization
    Fan, Zheng
    Wang, Ying-Li
    Ma, Qi-Tao
    Du, Hai-Xia
    Ma, Hong-Bin
    Journal of Network Intelligence, 2023, 8 (03): : 856 - 868
  • [24] Cross-Domain Item Recommendation Based on User Similarity
    Xu, Zhenzhen
    Jiang, Huizhen
    Kong, Xiangjie
    Kang, Jialiang
    Wang, Wei
    Xia, Feng
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2016, 13 (02) : 359 - 373
  • [25] Cross-domain recommendation based on latent factor alignment
    Yu, Xu
    Hu, Qiang
    Li, Hui
    Du, Junwei
    Gao, Jia
    Sun, Lijun
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (05): : 3421 - 3432
  • [26] A VAE-Based User Preference Learning and Transfer Framework for Cross-Domain Recommendation
    Zhang, Tong
    Chen, Chen
    Wang, Dan
    Guo, Jie
    Song, Bin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10383 - 10396
  • [27] Cross-domain recommendation based on latent factor alignment
    Xu Yu
    Qiang Hu
    Hui Li
    Junwei Du
    Jia Gao
    Lijun Sun
    Neural Computing and Applications, 2022, 34 : 3421 - 3432
  • [28] A Maximum Margin Matrix Factorization based Transfer Learning Approach for Cross-Domain Recommendation
    Veeramachaneni, Sowmini Devi
    Pujari, Arun K.
    Padmanabhan, Vineet
    Kumar, Vikas
    APPLIED SOFT COMPUTING, 2019, 85
  • [29] A Graph Neural Network for Cross-domain Recommendation Based on Transfer and Inter-domain Contrastive Learning
    Mu, Caihong
    Ying, Jiahui
    Fang, Yunfei
    Liu, Yi
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 226 - 234
  • [30] Contrastive Cross-Domain Sequential Recommendation
    Cao, Jiangxia
    Cong, Xin
    Sheng, Jiawei
    Liu, Tingwen
    Wang, Bin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 138 - 147