Fulton proves that the matrix Schubert variety (X-pi) over bar congruent to Y-pi x C-q can be defined via certain rank conditions encoded in the Rothe diagram of pi is an element of S-N. In the case where Y-pi := TV(sigma(pi)) is toric (with respect to a (C*)(2N-1) action), we show that it can be described as a toric (edge) ideal of a bipartite graph G(pi). We characterize the lower dimensional faces of the associated so-called edge cone sigma(pi) explicitly in terms of subgraphs of G(pi) and present a combinatorial study for the first-order deformations of Y-pi. We prove that Y-pi is rigid if and only if the three-dimensional faces of sigma(pi) are all simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of pi.
机构:
Univ Buenos Aires, FCEN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, FCEN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
Dickenstein, Alicia
Di Rocco, Sandra
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, SwedenUniv Buenos Aires, FCEN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
Di Rocco, Sandra
Piene, Ragni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oslo, Dept Math, POB 1053 Blindern, NO-0316 Oslo, NorwayUniv Buenos Aires, FCEN, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
Piene, Ragni
NEW YORK JOURNAL OF MATHEMATICS,
2024,
30
: 1498
-
1516