Rigid toric matrix Schubert varieties

被引:1
|
作者
Portakal, Irem [1 ]
机构
[1] Tech Univ Munich, Dept Math, Munich, Germany
关键词
Matrix Schubert variety; Toric variety; Bipartite graph; Rothe diagram; Deformation; GEOMETRY;
D O I
10.1007/s10801-023-01229-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fulton proves that the matrix Schubert variety (X-pi) over bar congruent to Y-pi x C-q can be defined via certain rank conditions encoded in the Rothe diagram of pi is an element of S-N. In the case where Y-pi := TV(sigma(pi)) is toric (with respect to a (C*)(2N-1) action), we show that it can be described as a toric (edge) ideal of a bipartite graph G(pi). We characterize the lower dimensional faces of the associated so-called edge cone sigma(pi) explicitly in terms of subgraphs of G(pi) and present a combinatorial study for the first-order deformations of Y-pi. We prove that Y-pi is rigid if and only if the three-dimensional faces of sigma(pi) are all simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of pi.
引用
收藏
页码:1265 / 1283
页数:19
相关论文
共 50 条
  • [31] Schubert varieties and generalizations
    Springer, TA
    REPRESENTATION THEORIES AND ALGEBRAIC GEOMETRY, 1998, 514 : 413 - 440
  • [32] A primer on toric varieties
    Heuberger, Liana
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (03) : 952 - 971
  • [33] Residues in toric varieties
    Cattani, E
    Cox, D
    Dickenstein, A
    COMPOSITIO MATHEMATICA, 1997, 108 (01) : 35 - 76
  • [34] Intersections of Schubert varieties
    Mulay, SB
    JOURNAL OF ALGEBRA, 1996, 186 (03) : 661 - 676
  • [35] Toroidal Schubert Varieties
    Can, Mahir Bilen
    Hodges, Reuven
    Lakshmibai, Venkatramani
    ALGEBRAS AND REPRESENTATION THEORY, 2020, 23 (05) : 1927 - 1943
  • [36] Toroidal Schubert Varieties
    Mahir Bilen Can
    Reuven Hodges
    Venkatramani Lakshmibai
    Algebras and Representation Theory, 2020, 23 : 1927 - 1943
  • [37] FIBERED TORIC VARIETIES
    Khovanskii, Askold
    Monin, Leonid
    MOSCOW MATHEMATICAL JOURNAL, 2023, 23 (04) : 545 - 558
  • [38] Interpolation of toric varieties
    Dickenstein, Alicia
    Di Rocco, Sandra
    Piene, Ragni
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 1498 - 1516
  • [39] GAUSSMAPS OF TORIC VARIETIES
    Furukawa, Katsuhisa
    Ito, Atsushi
    TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (03) : 431 - 454
  • [40] Endomotives of toric varieties
    Jin, Zhaorong
    Marcolli, Matilde
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 77 : 48 - 71