SINGULAR EQUATIONS WITH VARIABLE EXPONENTS AND CONCAVE-CONVEX NONLINEARITIES

被引:3
|
作者
Gasinski, Leszek [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, GR-15780 Athens, Greece
来源
关键词
Concave-convex terms; truncation; positive solutions; regular theory; maximum principle; HOLDER LOCAL MINIMIZERS; MULTIPLICITY; EIGENVALUES; SOBOLEV;
D O I
10.3934/dcdss.2022135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear anisotropic Dirichlet problem with a reaction that has the combined effects of three distinct nonlinearities: a parametric singular term, a parametric "concave" term (the parameter lambda > 0 is the same in both) and a nonparametric "convex" perturbation. So, the problem is a singular version of the well known "concave-convex" problem. We prove an existence and multiplicity result which is global in the parameter lambda > 0 (a bifurcation-type theorem). We also indicate some small improvements in the case of (p(z), q(z)) and p(z )-equations.
引用
收藏
页码:1414 / 1434
页数:21
相关论文
共 50 条