Collaborative Embedding Learning via Tensor Integration for Multi-View Clustering

被引:5
|
作者
Zhang, Yue [1 ]
Sun, Xin [2 ]
Cai, Hongmin [2 ]
Wang, Haiyan [3 ]
Chen, Jiazhou [2 ]
Guo, Endai [2 ]
Qi, Fei [2 ]
Li, Junyu [2 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou 510665, Peoples R China
[2] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[3] China South Agr Univ, Sch Math & Informat, Guangzhou 510642, Peoples R China
关键词
Multi-view clustering; low-rank tensor; low-dimensional embedding learning; soft-threshold embedding learning; SIMILARITY;
D O I
10.1109/TETCI.2024.3353037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering exploits the complementary information of different views for comprehensive data analysis. Recently, graph learning techniques with low-dimensional embedding have been developed to learn consensus affinity graph for multi-view clustering. However, projecting data into the low-dimensional space has often resulted in the compression of data information, which is insufficient for graph learning. To address this challenge, this paper proposes a Collaborative Embedding Learning via Tensor (CELT) method, which learns intra-view affinity graphs for each view from both the original space and the low-dimensional space jointly. Additionally, all intra-view affinity graphs are stacked into a tensor, allowing the learning of a consensus affinity to capture inter-view consistency. In this way, an enhanced consensus affinity is obtained to improve the performance of multi-view clustering. Extensive experimental results on eight real-world datasets demonstrate that the proposed collaborative learning framework is effective for graph learning and outperforms competitive multi-view clustering methods.
引用
收藏
页码:1841 / 1852
页数:12
相关论文
共 50 条
  • [21] Enhanced tensor multi-view clustering via dual constraints
    Liu, Wenzhe
    Liu, Luyao
    Zhang, Yong
    Feng, Lin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [22] Flexible Tensor Learning for Multi-View Clustering With Markov Chain
    Qin, Yalan
    Tang, Zhenjun
    Wu, Hanzhou
    Feng, Guorui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1552 - 1565
  • [23] Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix
    Chen, Yongyong
    Xiao, Xiaolin
    Zhou, Yicong
    PATTERN RECOGNITION, 2020, 106
  • [24] Orthogonal multi-view tensor-based learning for clustering
    Ma, Shuangxun
    Liu, Yuehu
    Liu, Guangcan
    Zheng, Qinghai
    Zhang, Chi
    NEUROCOMPUTING, 2022, 500 : 592 - 603
  • [25] Nonconvex Tensor Hypergraph Learning for Multi-view Subspace Clustering
    Yao, Xue
    Li, Min
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 39 - 51
  • [26] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 3534 - 3543
  • [27] Robust Tensor Subspace Learning for Incomplete Multi-View Clustering
    Liang, Cheng
    Wang, Daoyuan
    Zhang, Huaxiang
    Zhang, Shichao
    Guo, Fei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6934 - 6948
  • [28] Sparse Graph Tensor Learning for Multi-View Spectral Clustering
    Chen, Man-Sheng
    Li, Zhi-Yuan
    Lin, Jia-Qi
    Wang, Chang-Dong
    Huang, Dong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, : 1 - 10
  • [29] Fast Disentangled Slim Tensor Learning for Multi-View Clustering
    Xu, Deng
    Zhang, Chao
    Li, Zechao
    Chen, Chunlin
    Li, Huaxiong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1254 - 1265
  • [30] Deep low-rank tensor embedding for multi-view subspace clustering
    Liu, Zhaohu
    Song, Peng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237