Regularization of anisotropic full-waveform inversion with multiple parameters by adversarial neural networks

被引:0
|
作者
Yao, Jiashun [1 ]
Warner, Michael [1 ]
Wang, Yanghua [1 ]
机构
[1] Imperial Coll London, Resource Geophys Acad, Ctr Reservoir Geophys, London SW7 2BP, England
关键词
TOMOGRAPHY;
D O I
10.1190/GEO2021-0794.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The anisotropic full-waveform inversion (FWI) is a seis-mic inverse problem for multiple parameters, which aims to simultaneously reconstruct the vertical velocity and the anisotropic parameters of the earth's subsurface. This multi -parameter inverse problem suffers from two issues. First, the objective function of the data fitting is less sensitive to the anisotropic parameters. Second, the crosstalk effect among the different parameters worsens the model update in the iterative inversion. We have developed a method that sta-tistically regularizes the anisotropic FWI using Wasserstein adversarial networks, by penalizing the Wasserstein distance between the distribution of the current model parameters and that of the parameters at the borehole locations. The regu-larizer can mitigate the issues of anisotropic FWI with multi-ple parameters and therefore it also can be applied to other inverse problems with multiple parameters.
引用
收藏
页码:R95 / R103
页数:9
相关论文
共 50 条
  • [31] A Feature-Boosted Convolutional Neural Network for Full-Waveform Inversion
    Song, Liwei
    Li, Ning
    Wang, Yetong
    Shi, Ying
    Ke, Xuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [32] 3D anisotropic full-waveform inversion for complex salt provinces
    Li, Junxiao
    Rusmanugroho, Herurisa
    Kalita, Mahesh
    Xin, Kefeng
    Dzulkefli, Farah Syazana
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [33] Parametric convolutional neural network-domain full-waveform inversion
    Wu, Yulang
    McMechan, George A.
    GEOPHYSICS, 2019, 84 (06) : R881 - R896
  • [34] Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion
    Biondi, Biondo
    Almomin, Ali
    GEOPHYSICS, 2014, 79 (03) : WA129 - WA140
  • [35] FWIGAN: Full-Waveform Inversion via a Physics-Informed Generative Adversarial Network
    Yang, Fangshu
    Ma, Jianwei
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2023, 128 (04)
  • [36] Regularization tunnelling for full waveform inversion
    Keating, Scott D.
    Innanen, Kristopher A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 229 (03) : 1503 - 1516
  • [37] Improved seismic envelope full-waveform inversion
    Xiong, Kai
    Lumley, David
    Zhou, Wei
    GEOPHYSICS, 2023, 88 (04) : r421 - r437
  • [38] Full-waveform inversion imaging of the human brain
    Guasch, Lluis
    Calderon Agudo, Oscar
    Tang, Meng-Xing
    Nachev, Parashkev
    Warner, Michael
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [39] Preconditioning of full-waveform inversion in viscoacoustic media
    Causse, Emmanuel
    Mittet, Rune
    Ursin, Bjørn
    Geophysics, 64 (01): : 130 - 145
  • [40] Extrapolated full-waveform inversion with deep learning
    Sun, Hongyu
    Demanet, Laurent
    GEOPHYSICS, 2020, 85 (03) : R275 - R288