BOUNDEDNESS IN A FLUX-LIMITED CHEMOTAXIS-HAPTOTAXIS MODEL WITH NONLINEAR DIFFUSION

被引:1
|
作者
Wang, Hui [1 ]
Zheng, Pan [1 ,2 ,3 ]
Hu, Runlin [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Sci, Chongqing 400065, Peoples R China
[2] Univ Hong Kong, Shatin, Dept Math Chinese, Hong Kong, Peoples R China
[3] Yunnan Univ, Sch Math & Stat, Kunming 650091, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Boundedness; chemotaxis-haptotaxis; flux-limitation; nonlinear diffusion; CLASSICAL-SOLUTIONS; GLOBAL EXISTENCE; SYSTEM;
D O I
10.3934/eect.2023004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a flux-limited chemotaxis-haptotaxis system with nonlinear diffusion { u(t) = del center dot (D(u)del u) - chi del center dot (u|del v|(p-2)del v) - xi del center dot (u del w) + mu u(1 - u - w), v(t) = Delta v - v + u, w(t) = -vw, in Omega x (0, infinity), where Omega subset of R-n(n >= 2) is a smoothly bounded domain, chi, xi and mu are positive parameters, D(u) >= (u + 1)(-alpha) with 2-n/2n < alpha < 1/n . It is shown that for sufficiently smooth nonnegative initial data (u(0), v(0), w(0)) and 1 < p < n/n-1 (1 - alpha), the corresponding initial-boundary problem possesses a unique nonnegative global classical solution, which is uniformly bounded in time.
引用
收藏
页码:1133 / 1144
页数:12
相关论文
共 50 条