Enhancing feature information mining network for image super-resolution

被引:1
|
作者
Wu, Bingjun [1 ]
Yan, Hua [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
关键词
Image super-resolution; Attention mechanism; Convolutional neural networks; Multi-scale mechanism; QUALITY;
D O I
10.1007/s10489-022-04183-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNN) have been widely used in image super-resolution tasks in recent years, with remarkable results. Most existing CNN-based image super-resolution methods, on the other hand, deepen the network structure to increase the receptive field and do not fully utilize the intermediate features, resulting in limited extracted information and loss of important information. To address these issues, we propose an enhancing feature information mining network (EFMNet) that aims to enhance feature capture and mining. Specifically, a calibrated multi-scale module (CMS) is proposed that powerfully extracts feature information from different scales by accessing different ranges of pixels in the spatial domain and adaptively adjusts feature information. Furthermore, to effectively retain high-frequency information, a dual-branch attention block (DAB) is developed that captures dependencies between intermediate features, and learns the confidence of each pixel location in the feature map to capture more informative feature. Qualitative and quantitative evaluations from extensive experiments on benchmark datasets demonstrate that our network achieves advanced performance.
引用
收藏
页码:14615 / 14627
页数:13
相关论文
共 50 条
  • [31] Feature enhanced cascading attention network for lightweight image super-resolution
    Huang, Feng
    Liu, Hongwei
    Chen, Liqiong
    Shen, Ying
    Yu, Min
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [32] DFAN: Dual Feature Aggregation Network for Lightweight Image Super-Resolution
    Li, Shang
    Zhang, Guixuan
    Luo, Zhengxiong
    Liu, Jie
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [33] Multi-scale feature aggregation network for Image super-resolution
    Wenlong Chen
    Pengcheng Yao
    Shaoyan Gai
    Feipeng Da
    Applied Intelligence, 2022, 52 : 3577 - 3586
  • [34] Multi-scale feature aggregation network for Image super-resolution
    Chen, Wenlong
    Yao, Pengcheng
    Gai, Shaoyan
    Da, Feipeng
    APPLIED INTELLIGENCE, 2022, 52 (04) : 3577 - 3586
  • [35] CFGN: A Lightweight Context Feature Guided Network for Image Super-Resolution
    Dai, Tao
    Ya, Mengxi
    Li, Jinmin
    Zhang, Xinyi
    Xia, Shu-Tao
    Zhu, Zexuan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 855 - 865
  • [36] Efficient Attention Fusion Feature Extraction Network for Image Super-Resolution
    Wang, Tuoran
    Cheng, Na
    Ding, Shijia
    Wang, Hongyu
    ACM International Conference Proceeding Series, 2023, : 35 - 44
  • [37] FSFN: feature separation and fusion network for single image super-resolution
    Zhu, Kai
    Chen, Zhenxue
    Wu, Q. M. Jonathan
    Wang, Nannan
    Zhao, Jie
    Zhang, Gan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 31599 - 31618
  • [38] PFAN: progressive feature aggregation network for lightweight image super-resolution
    Chen, Liqiong
    Yang, Xiangkun
    Wang, Shu
    Shen, Ying
    Wu, Jing
    Huang, Feng
    Qiu, Zhaobing
    VISUAL COMPUTER, 2025,
  • [39] FG-SRGAN: A Feature-Guided Super-Resolution Generative Adversarial Network for Unpaired Image Super-Resolution
    Lian, Shuailong
    Zhou, Hejian
    Sun, Yi
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 151 - 161
  • [40] Local feature extraction for image super-resolution
    Baboulaz, Loic
    Dragotti, Pier Luigi
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2653 - 2656