Structure, dynamics and free energy studies on the effect of point mutations on SARS-CoV-2 spike protein binding with ACE2 receptor

被引:4
|
作者
Rucker, George [1 ]
Qin, Hong [2 ]
Zhang, Liqun [3 ]
机构
[1] Tennessee Technol Univ, Dept Chem Engn, Cookeville, TN USA
[2] Univ Tennessee Chattanooga, Dept Comp Sci, Chattanooga, TN USA
[3] Univ Rhode Isl, Dept Chem Engn, Kingston, RI 02881 USA
来源
PLOS ONE | 2023年 / 18卷 / 10期
基金
美国国家科学基金会;
关键词
RESPIRATORY SYNDROME CORONAVIRUS; MOLECULAR-DYNAMICS; DOMAIN;
D O I
10.1371/journal.pone.0289432
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ongoing COVID-19 pandemic continues to infect people worldwide, and the virus continues to evolve in significant ways which can pose challenges to the efficiency of available vaccines and therapeutic drugs and cause future pandemic. Therefore, it is important to investigate the binding and interaction of ACE2 with different RBD variants. A comparative study using all-atom MD simulations was conducted on ACE2 binding with 8 different RBD variants, including N501Y, E484K, P479S, T478I, S477N, N439K, K417N and N501Y-E484K-K417N on RBD. Based on the RMSD, RMSF, and DSSP results, overall the binding of RBD variants with ACE2 is stable, and the secondary structure of RBD and ACE2 are consistent after the point mutation. Besides that, a similar buried surface area, a consistent binding interface and a similar amount of hydrogen bonds formed between RBD and ACE2 although the exact residue pairs on the binding interface were modified. The change of binding free energy from point mutation was predicted using the free energy perturbation (FEP) method. It is found that N501Y, N439K, and K417N can strengthen the binding of RBD with ACE2, while E484K and P479S weaken the binding, and S477N and T478I have negligible effect on the binding. Point mutations modified the dynamic correlation of residues in RBD based on the dihedral angle covariance matrix calculation. Doing dynamic network analysis, a common intrinsic network community extending from the tail of RBD to central, then to the binding interface region was found, which could communicate the dynamics in the binding interface region to the tail thus to the other sections of S protein. The result can supply unique methodology and molecular insight on studying the molecular structure and dynamics of possible future pandemics and design novel drugs.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Mechanism and evolution of human ACE2 binding by SARS-CoV-2 spike
    Wrobel, Antoni G.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 81
  • [22] SARS-CoV-2 spike and ACE2 entanglement-like binding
    Pregnolato, Massimo
    Zizzi, Paola
    QUANTUM MACHINE INTELLIGENCE, 2023, 5 (01)
  • [23] SARS-CoV-2 spike and ACE2 entanglement-like binding
    Massimo Pregnolato
    Paola Zizzi
    Quantum Machine Intelligence, 2023, 5
  • [24] Structural Changes at the Zinc Active Site of ACE2 on Binding the SARS-CoV-2 Spike Protein Receptor Binding Domain
    Dolgova, Natalia V.
    Qureshi, Muhammad
    Latimer, Matthew
    Grishin, Andrey
    Cygler, Miroslaw
    Vogt, Linda I.
    Cotelesage, Julien J. H.
    Sokaras, Dimosthenis
    Kroll, Thomas
    Pickering, Ingrid J.
    George, Graham N.
    INORGANIC CHEMISTRY, 2025, 64 (08) : 3831 - 3841
  • [25] A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor
    Sajjan Rajpoot
    Tomokazu Ohishi
    Ashutosh Kumar
    Qiuwei Pan
    Sreeparna Banerjee
    Kam Y. J. Zhang
    Mirza S. Baig
    Drugs in R&D, 2021, 21 : 273 - 283
  • [26] A Novel Therapeutic Peptide Blocks SARS-CoV-2 Spike Protein Binding with Host Cell ACE2 Receptor
    Rajpoot, Sajjan
    Ohishi, Tomokazu
    Kumar, Ashutosh
    Pan, Qiuwei
    Banerjee, Sreeparna
    Zhang, Kam Y. J.
    Baig, Mirza S.
    DRUGS IN R&D, 2021, 21 (03) : 273 - 283
  • [27] Surface enhanced Raman spectroscopy based analysis of SARS-CoV-2 spike protein binding to ACE2 receptor
    Wetzel, Christoph
    Jansen-Olliges, Linda
    Zeilinger, Carsten
    Surup, Frank
    Stadler, Marc
    Roth, Bernhard
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XXI, 2023, 12383
  • [28] Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies
    Yi, Chunyan
    Sun, Xiaoyu
    Ye, Jing
    Ding, Longfei
    Liu, Meiqin
    Yang, Zhuo
    Lu, Xiao
    Zhang, Yaguang
    Ma, Liyang
    Gu, Wangpeng
    Qu, Aidong
    Xu, Jianqing
    Shi, Zhengli
    Ling, Zhiyang
    Sun, Bing
    CELLULAR & MOLECULAR IMMUNOLOGY, 2020, 17 (06) : 621 - 630
  • [29] The inorganic polymer, polyphosphate, blocks binding of SARS-CoV-2 spike protein to ACE2 receptor at physiological concentrations
    Neufurth, Meik
    Wang, Xiaohong
    Tolba, Emad
    Lieberwirth, Ingo
    Wang, Shunfeng
    Schroeder, Heinz C.
    Mueller, Werner E. G.
    BIOCHEMICAL PHARMACOLOGY, 2020, 182
  • [30] Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies
    Chunyan Yi
    Xiaoyu Sun
    Jing Ye
    Longfei Ding
    Meiqin Liu
    Zhuo Yang
    Xiao Lu
    Yaguang Zhang
    Liyang Ma
    Wangpeng Gu
    Aidong Qu
    Jianqing Xu
    Zhengli Shi
    Zhiyang Ling
    Bing Sun
    Cellular & Molecular Immunology, 2020, 17 : 621 - 630