Ti3C2Tx/SnO2 P-N heterostructure construction boosts room-temperature detecting formaldehyde

被引:19
|
作者
Zhang, Yue [1 ]
Wang, Ming-Yue [2 ]
San, Xiao-Guang [1 ]
Shen, Yan-Bai [3 ]
Wang, Guo-Sheng [1 ]
Zhang, Lei [1 ]
Meng, Dan [1 ]
机构
[1] Shenyang Univ Chem Technol, Coll Chem Engn, Shenyang 110142, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat ISEM, Australian Inst Innovat Mat AIIM, Wollongong, NSW 2500, Australia
[3] Northeastern Univ, Coll Resources & Civil Engn, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Ti3C2Tx/SnO2; nanocomposites; p-n heterostructures; Formaldehyde sensing; Room temperature; DFT calculations; GAS SENSORS; CO GAS;
D O I
10.1007/s12598-023-02456-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Formaldehyde is a common atmospheric pollutant produced in industrial production and daily life. However, the traditional semiconductor formaldehyde gas sensor cannot work at room temperature, which limits its practical application. Therefore, developing high-performance gas sensors for rapidly and accurately detecting formaldehyde at room temperature is an important topic. In this study, Ti3C2Tx/SnO2 heterostructures were constructed, which could selectively detect formaldehyde at room temperature with a response value of 29.16% (10 x 10(-6)). In addition, the sensor shows a remarkable theoretical detection limit of 5.09 x 10(-9) and good long-term stability. Density functional theory (DFT) simulations reveal that SnO2 nanospheres provide the majority of adsorption sites that strongly interact with formaldehyde. Meanwhile, Ti3C2Tx acting as a conductive layer facilitates the transfer of charge carriers so that they show a sensing response to formaldehyde at room temperature. Moreover, the formation of p-n heterostructures between SnO2 and Ti3C2Tx boosts the Schottky barrier at the interface, which is the critical factor in enhancing the sensing properties by turning the Schottky barrier upon introducing formaldehyde gas. This perspective is expected to provide instructive guidance for utilizing MXene/metal oxide nanocomposites to improve the gas sensing performance at room temperature.
引用
收藏
页码:267 / 279
页数:13
相关论文
共 50 条
  • [41] A two-dimensional Ti3C2TX MXene@TiO2/MoS2 heterostructure with excellent selectivity for the room temperature detection of ammonia
    Tian, Xu
    Yao, Lijia
    Cui, Xiuxiu
    Zhao, Rongjun
    Chen, Ting
    Xiao, Xuechun
    Wang, Yude
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (10) : 5505 - 5519
  • [42] Electrodeposition of a Ni-P-TiO2/Ti3C2Tx Coating with In Situ Grown Nanoparticles TiO2 on Ti3C2Tx Sheets
    Du, Yingchao
    Zhang, Xiaomeng
    Wei, Lianqi
    Yu, Bo
    Ma, Daqing
    Ye, Shufeng
    COATINGS, 2019, 9 (11)
  • [43] Research Progress on Ammonia Sensors Based on Ti3C2Tx MXene at Room Temperature: A Review
    Cheng, Kaixin
    Tian, Xu
    Yuan, Shaorui
    Feng, Qiuyue
    Wang, Yude
    SENSORS, 2024, 24 (14)
  • [44] Wearable room-temperature ethanol sensor based on Ti3C2Tx/Polypyrrole functionalized face mask for drunk driving monitoring
    Wu, Guodong
    Du, Haishun
    Pakravan, Kiandokht
    Kim, Wonhyeong
    Cha, Yoo Lim
    Beidaghi, Majid
    Zhang, Xinyu
    Pan, Xuejun
    Kim, Dong-Joo
    CARBON, 2024, 216
  • [45] Fe(OH)3/Ti3C2Tx nanocomposites for enhanced ammonia gas sensor at room temperature
    Zhao, Zhihua
    Zhang, Hepeng
    Chen, Pu
    Jin, Guixin
    Wu, Lan
    NANOTECHNOLOGY, 2024, 35 (50)
  • [46] Transparent p-type AlN:SnO2 and p-AlN:SnO2/n-SnO2:In2O3 p-n junction fabrication
    Liu, Y. S.
    Hsieh, C. I.
    Wu, Y. J.
    Wei, Y. S.
    Lee, P. M.
    Liu, C. Y.
    APPLIED PHYSICS LETTERS, 2012, 101 (12)
  • [47] Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature
    Tai, Huiling
    Duan, Zaihua
    He, Zaizhou
    Li, Xian
    Xu, Jianglong
    Liu, Bohao
    Jiang, Yadong
    SENSORS AND ACTUATORS B-CHEMICAL, 2019, 298
  • [48] Ti3C2Tx/Bi2WO6 composite nanomaterials for triethylamine detection at room temperature
    Wang, Junjun
    Lin, Peng
    Wang, Junqiang
    Wang, Pengtao
    Wang, Guodong
    Cao, Guohua
    Yu, Weiyang
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 421
  • [49] Ultrasensitive ammonia gas sensor based on Ti3C2Tx/Ti3AlC2 planar composite at room temperature
    Liu, Zhihua
    Han, Dan
    Liu, Lulu
    Li, Donghui
    Han, Xiaomei
    Chen, Yi
    Liu, Xiaoru
    Zhuo, Kai
    Cheng, Yongqiang
    Sang, Shengbo
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 378
  • [50] Enhanced room-temperature NO2 sensing performance of SnO2/Ti3C2 composite with double heterojunctions by controlling co-exposed {221} and {110} facets of SnO2
    Liu, Siwei
    Wang, Mingyuan
    Ge, Chuanxin
    Lei, Shuangying
    Hussain, Shahid
    Wang, Mingsong
    Qiao, Guanjun
    Liu, Guiwu
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 365