Development of CO2-integrated 3D printing concrete

被引:13
|
作者
Li, Long [1 ,2 ,3 ]
Hao, Lucen [1 ,2 ,3 ]
Li, Xiaosheng [2 ,3 ]
Xiao, Jianzhuang [1 ]
Zhang, Shipeng [2 ,3 ]
Poon, Chi Sun [2 ,3 ]
机构
[1] Tongji Univ, Dept Struct Engn, Shanghai 200092, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Res Ctr Resources Engn Carbon Neutral, Hong Kong, Peoples R China
关键词
3D printing concrete (3DPC); CO; 2; mixing; Rheological properties; Mechanical properties; Buildability; PORE STRUCTURE; PORTLAND-CEMENT; HYDRATION; CARBONATION; SHRINKAGE; LIMESTONE; STRENGTH; C(3)A; CO2; C3S;
D O I
10.1016/j.conbuildmat.2023.134233
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
3D printing concrete (3DPC) technology is a promising technique for construction due to its advantages such as no formwork is needed, fast production, automation, and high architectural freedom. However, the layer-bylayer extrusion method has stricter requirements on the rheological properties of concrete. One of challenges of this technology is how to improve the rheological properties of concrete to satisfy the conflicting requirements during pumping and after extrusion. This study proposed to use CO(2)as accelerator and rheology modifier by injecting CO2 during secondary mixing to improve the rheological and mechanical properties of 3DPC. The influences of the secondary CO2 mixing on the properties of poured concrete and 3DPC were investigated. After using the secondary CO2 mixing, the setting time and workability of concrete were reduced, which contributed to the significantly improved buildability of 3DPC. This was because CO2 accelerated the hydration of tricalcium aluminate (C3A) and tricalcium silicate (C3S) during the secondary mixing. After that, they were continuously accelerated by the calcium carbonate formed during CO2 mixing. Also, the compressive strength of poured concrete was enhanced by the secondary CO(2)mixing because it reduced the volume of larger pores (>200 nm) and promoted the formation of calcium silicate hydrates (C-S-H), which simultaneously slightly increased the drying shrinkage. In addition, after using the secondary CO2 mixing, the compressive strength and interlayer bond strength of 3DPC was enhanced.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Biomimicry for 3D concrete printing: A review and perspective
    du Plessis, Anton
    Babafemi, Adewumi John
    Paul, Suvash Chandra
    Panda, Biranchi
    Tran, Jonathan Phuong
    Broeckhoven, Chris
    ADDITIVE MANUFACTURING, 2021, 38
  • [42] Lap Joint Reinforcement for 3D Concrete Printing
    Marchment, Taylor
    Sanjayan, Jay
    JOURNAL OF STRUCTURAL ENGINEERING, 2022, 148 (06)
  • [43] Optimizing Digital 3D Printing of Concrete Structures
    Jendele, Libor
    Rymes, Jiri
    Cervenka, Jan
    SMART & SUSTAINABLE INFRASTRUCTURE: BUILDING A GREENER TOMORROW, ISSSI 2023, 2024, 48 : 59 - 72
  • [44] Evaluation of Extrusion Methods for 3D Concrete Printing
    Quah, Tan Kai Noel
    Tay, Yi Wei Daniel
    Tan, Ming Jen
    Li, King Ho Holden
    CONSTRUCTION 3D PRINTING, 4-IC3DCP CONFERENCE 2023, 2024, : 281 - 288
  • [45] 3D Printing of Concrete-Geopolymer Hybrids
    Ziejewska, Celina
    Marczyk, Joanna
    Korniejenko, Kinga
    Bednarz, Sebastian
    Sroczyk, Piotr
    Lach, Michal
    Mikula, Janusz
    Figiela, Beata
    Szechynska-Hebda, Magdalena
    Hebda, Marek
    MATERIALS, 2022, 15 (08)
  • [46] Quantifying 3D Concrete Printing Production Waste
    Al Farhan, Abdul Azziz
    Xu, Jie
    Dobrzanski, James
    Kolawole, John Temitope
    Whyte, Liam
    Isa, Muhammed Nura
    Liu, Xingzi
    Kinnell, Peter
    Buswell, Richard
    FOURTH RILEM INTERNATIONAL CONFERENCE ON CONCRETE AND DIGITAL FABRICATION, DC 2024, 2024, 53 : 46 - 53
  • [47] 3D concrete printing matrix reinforced with Geogrid
    Geetha, S.
    Selvakumar, M.
    Lakshmi, S. Muthu
    MATERIALS TODAY-PROCEEDINGS, 2022, 49 : 1443 - 1447
  • [48] 3D Concrete Printing - A Structural Engineering Perspective
    Salet, Theo A. M.
    Bos, Freek P.
    Wolfs, Rob J. M.
    Ahmed, Zeeshan Y.
    HIGH TECH CONCRETE: WHERE TECHNOLOGY AND ENGINEERING MEET, 2018, : XLIII - LVII
  • [50] Framework of 3D Concrete Printing Potential and Challenges
    Al-Tamimi, Adil K. K.
    Alqamish, Habib H. H.
    Khaldoune, Ahlam
    Alhaidary, Haidar
    Shirvanimoghaddam, Kamyar
    BUILDINGS, 2023, 13 (03)