Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials

被引:4
|
作者
Zeighampour, Farideh [1 ]
Khoddami, Akbar [1 ,2 ]
Dolez, Patricia [2 ]
机构
[1] Isfahan Univ Technol, Dept Text Engn, Esfahan 8415683111, Iran
[2] Univ Alberta, Dept Human Ecol, Edmonton, AB T6G 2N1, Canada
关键词
Flexible thermal storage system; Shape-stabilized phase-change material; Nanocomposites; Thermal conductivity; Rapid thermal response; ENERGY STORAGE; MECHANICAL-PROPERTIES; STORAGE/RELEASE; HEAT; PCM;
D O I
10.1186/s40691-023-00363-7
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
A novel flexible thermal storage system based on organic phase change materials (PCMs) deposited on a non-woven polyester (PET) substrate is described in this article. Thermally regulating effects were created via encapsulation of polyethylene glycol (PEG) in carbon nanofibers (CNFs) to manufacture a shape-stable phase change material (SSPCM). Improvement in the thermal conductivity (TC) of the system was obtained by incorporating reduced graphite oxide nanoparticles (rGONP) into the CNFs. A new method was applied to load and secure the manufactured SSPCMs on the fibrous substrate so that an acceptable level of flexibility was preserved (change in bending length less than 30%). The sample performance was evaluated by measuring its thermal properties. The physical properties, wash fastness, abrasion resistance, morphology, and PCM leakage of the samples were also assessed. The results point to a good thermal storage ability of the samples with characteristic phase change temperature ranges of 30.1-31.4 degrees C and 19.2-24.3 degrees C for melting and freezing, respectively, and a latent heat of 8.9-22.9 J g-1 for meting and 11.2-21.4 J g-1 for freezing. The use of the CNF-rGONP for PEG enhanced the TC of the system by 454%, thus providing a rapid thermal response, and efficiently prevented the leakage of PEG. Finally, the loading and fixation method on the non-woven substrate allowed an acceptable level of durability with less than 4% of weight loss during washing and abrasion tests. This system provides a promising solution for rapid response, flexible thermal storage wearables.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage
    Chen, Zhi
    Shan, Feng
    Cao, Lei
    Fang, Guiyin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 102 : 131 - 136
  • [42] Preparation and thermal properties of shape-stabilized polyethylene glycol/mesoporous silica composite phase change materials for thermal energy storage
    Wang, Chaoming
    Cai, Zhengyu
    Chen, Ke
    Huang, Jun
    Wang, Tingjun
    ENERGY STORAGE, 2019, 1 (02)
  • [43] Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage
    Chriaa, Ibtissem
    Trigui, Abdelwaheb
    Karkri, Mustapha
    Jedidi, Ilyes
    Abdelmouleh, Makki
    Boudaya, Chokri
    APPLIED THERMAL ENGINEERING, 2020, 171
  • [44] Thermal reliability of organic-organic phase change materials and their shape-stabilized composites
    Cardenas-Ramirez, Carolina
    Gomez, Maryory A.
    Jaramillo, Franklin
    Fernandez, Angel G.
    Cabeza, Luisa F.
    JOURNAL OF ENERGY STORAGE, 2021, 40
  • [45] Preparation and thermal characterization of oxalic acid dihydrate/bentonite composite as shape-stabilized phase change materials for thermal energy storage
    Han, Lipeng
    Xie, Shaolei
    Sun, Jinhe
    Jia, Yongzhong
    17TH IUMRS INTERNATIONAL CONFERENCE IN ASIA (IUMRS-ICA 2016), 2017, 182
  • [46] Flame retardance property of shape-stabilized phase change materials
    Wang, Jianping
    Wang, Yi
    Yang, Rui
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 140 : 439 - 445
  • [47] Preparation and thermal energy storage properties of polyaniline aerogel-based shape-stabilized composite phase change materials
    Li M.
    Ren S.
    Liu X.
    Tao Z.
    Yang H.
    Huang Z.
    Yang M.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (03): : 458 - 469
  • [48] A critical review of polymer support-based shape-stabilized phase change materials for thermal energy storage applications
    Bidiyasar, Rahul
    Kumar, Rohitash
    Jakhar, Narendra
    ENERGY STORAGE, 2024, 6 (04)
  • [49] Preparation and characterization of PEG/SiO2 composites as shape-stabilized phase change materials for thermal energy storage
    Li, Jingruo
    He, Lihong
    Liu, Tangzhi
    Cao, Xuejuan
    Zhu, Hongzhou
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 118 : 48 - 53
  • [50] Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage
    Luo, Yue
    Xiong, Suya
    Huang, Jintao
    Zhang, Feng
    Li, Chongchong
    Min, Yonggang
    Peng, Ruitao
    Liu, Yidong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 231