Bamboo derived N-doped carbon as a bifunctional electrode for high-performance zinc-air batteries

被引:8
|
作者
Cui, Peng [1 ]
Li, Tingzhen [1 ]
Chi, Xiao [1 ]
Yang, Wu [1 ]
Chen, Zehong [1 ]
Han, Wenjia [2 ]
Xia, Ruidong [3 ]
Shimelis, Admassie [4 ]
Iwuoha, Emmanuel Iheanyichukwu [5 ]
Peng, Xinwen [1 ]
机构
[1] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Jinan 250353, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Mat Sci & Engn, Nanjing 210023, Peoples R China
[4] Addis Ababa Univ, Dept Chem, POB 1176, Addis Ababa, Ethiopia
[5] Univ Western Cape, Key Lab NanoElectrochem, 4th Floor Chem Sci Bldg,Robert Sobukwe Rd, ZA-7535 Cape Town, South Africa
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION; POROUS CARBON; ACTIVE-SITES; ELECTROCATALYST; NITROGEN; BIOMASS; CATALYST; NANOPARTICLES; NANOTUBES; GRAPHENE;
D O I
10.1039/d3se00315a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biomass-derived low-cost porous carbon electrodes are a very promising cathode material for rechargeable zinc-air batteries (ZABs). Nevertheless, the preparation of hierarchical porous carbon (HPC) electrodes with excellent oxygen reduction/evolution reaction (ORR/OER) performance on a large scale still faces great challenges as the preparation methods mostly require sacrificing the biomorph-genetic structure of biomass followed by an inefficient bottom-up synthesis process. Herein, alkali pre-treatment of bamboo with the N-doping strategy was employed to efficiently prepare biomass-derived porous carbon as bulk-phase air cathodes for ZABs. The alkali can rapidly hydrolyze part of the lignin and hemicellulose of bamboo, which not only maximizes the exposure of the bamboo's internal channels to yield rich microporous structures but also helps to dope N uniformly into the HPC during subsequent pyrolysis. The as-prepared N-doped pre-treated bamboo-based HPC (NPBC) catalysts exhibit superior ORR/OER performance (E-1/2 = 0.864 V, E-j=10 = 1.644 V vs. RHE). Furthermore, the ZABs using NPBC catalysts as an air cathode exhibit a high peak power density of 249 mW cm(-2) and long-term stability over 300 hours. This work provides guidance and ideas for designing and developing biomass-based carbon materials for electrochemical energy-related devices.
引用
收藏
页码:2717 / 2726
页数:10
相关论文
共 50 条
  • [21] NaCl-Assisted electrospinning of bifunctional carbon fibers for High-Performance flexible zinc-air batteries
    Wang, Zhixin
    Fan, Chuanjun
    Chen, Yingjie
    Yuan, Ye
    Xue, Jishun
    Yu, Na
    Feng, Jianguang
    Yu, Liyan
    Dong, Lifeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 690
  • [22] Bifunctional Oxygen Electrocatalyst of Co4N and Nitrogen-Doped Carbon Nanowalls/Diamond for High-Performance Flexible Zinc-Air Batteries
    Zhang, Chuyan
    Huang, Nan
    Zhai, Zhaofeng
    Liu, Lusheng
    Chen, Bin
    Yang, Bing
    Jiang, Xin
    Yang, Nianjun
    ADVANCED ENERGY MATERIALS, 2023, 13 (41)
  • [23] Metal-organic framework derived FeNi alloy nanoparticles embedded in N-doped porous carbon as high-performance bifunctional air-cathode catalysts for rechargeable zinc-air battery
    Deng, Shu-Qi
    Zhuang, Zewen
    Zhou, Chuang -An
    Zheng, Hui
    Zheng, Sheng-Run
    Yan, Wei
    Zhang, Jiujun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 641 : 265 - 276
  • [24] N-Doped Carbon Nanotubes Derived from Graphene Oxide with Embedment of FeCo Nanoparticles as Bifunctional Air Electrode for Rechargeable Liquid and Flexible All-Solid-State Zinc-Air Batteries
    Hao, Xiaoqiong
    Jiang, Zhongqing
    Zhang, Baoan
    Tian, Xiaoning
    Song, Changsheng
    Wang, Likui
    Maiyalagan, Thandavarayan
    Hao, Xiaogang
    Jiang, Zhong-Jie
    ADVANCED SCIENCE, 2021, 8 (10)
  • [25] N-doped hollow carbon tubes derived N-HCTs@NiCo2O4 as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries
    Fu, Dongju
    Zhu, ZiYue
    Chen, Jianjun
    Ye, Liqiang
    Song, XinRui
    Zeng, XieRong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 902
  • [26] N-doped hollow carbon tubes derived N-HCTs@NiCo2O4 as bifunctional oxygen electrocatalysts for rechargeable Zinc-air batteries
    Fu, Dongju
    Zhu, ZiYue
    Chen, Jianjun
    Ye, Liqiang
    Song, XinRui
    Zeng, XieRong
    Journal of Electroanalytical Chemistry, 2021, 902
  • [27] Structural regulation of N-doped carbon nanocages as high-performance bifunctional electrocatalysts for rechargeable Zn-air batteries
    Lai, Changgan
    Liu, Xianbin
    Cao, Changqing
    Wang, Ying
    Yin, Yanhong
    Liang, Tongxiang
    Dionysiou, Dionysios D.
    CARBON, 2021, 173 : 715 - 723
  • [28] Trifunctional catalyst of FeCo,N-doped mixed-dimensional carbon for the high-performance zinc-air flow battery
    Xue, Jinling
    Liu, Zhipeng
    Li, Yinshi
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [29] Defected NiFe layered double hydroxides on N-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc-air batteries
    Ambriz-Pelaez, Oscar
    Bejar, Jose
    Ramos-Castillo, C. M.
    Guerra-Balcazar, Minerva
    Alvarez-Contreras, Lorena
    Arjona, Noe
    APPLIED SURFACE SCIENCE, 2022, 601
  • [30] Facile crafting of ultralong N-doped carbon nanotube encapsulated with FeCo nanoparticles as bifunctional electrocatalyst for rechargeable zinc-air batteries
    Wen, Jikai
    Li, Xufeng
    Liu, Yijiang
    Yang, Mei
    Liu, Bei
    Chen, Hongbiao
    Li, Huaming
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 336