Bamboo derived N-doped carbon as a bifunctional electrode for high-performance zinc-air batteries

被引:8
|
作者
Cui, Peng [1 ]
Li, Tingzhen [1 ]
Chi, Xiao [1 ]
Yang, Wu [1 ]
Chen, Zehong [1 ]
Han, Wenjia [2 ]
Xia, Ruidong [3 ]
Shimelis, Admassie [4 ]
Iwuoha, Emmanuel Iheanyichukwu [5 ]
Peng, Xinwen [1 ]
机构
[1] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Jinan 250353, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Mat Sci & Engn, Nanjing 210023, Peoples R China
[4] Addis Ababa Univ, Dept Chem, POB 1176, Addis Ababa, Ethiopia
[5] Univ Western Cape, Key Lab NanoElectrochem, 4th Floor Chem Sci Bldg,Robert Sobukwe Rd, ZA-7535 Cape Town, South Africa
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION; POROUS CARBON; ACTIVE-SITES; ELECTROCATALYST; NITROGEN; BIOMASS; CATALYST; NANOPARTICLES; NANOTUBES; GRAPHENE;
D O I
10.1039/d3se00315a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biomass-derived low-cost porous carbon electrodes are a very promising cathode material for rechargeable zinc-air batteries (ZABs). Nevertheless, the preparation of hierarchical porous carbon (HPC) electrodes with excellent oxygen reduction/evolution reaction (ORR/OER) performance on a large scale still faces great challenges as the preparation methods mostly require sacrificing the biomorph-genetic structure of biomass followed by an inefficient bottom-up synthesis process. Herein, alkali pre-treatment of bamboo with the N-doping strategy was employed to efficiently prepare biomass-derived porous carbon as bulk-phase air cathodes for ZABs. The alkali can rapidly hydrolyze part of the lignin and hemicellulose of bamboo, which not only maximizes the exposure of the bamboo's internal channels to yield rich microporous structures but also helps to dope N uniformly into the HPC during subsequent pyrolysis. The as-prepared N-doped pre-treated bamboo-based HPC (NPBC) catalysts exhibit superior ORR/OER performance (E-1/2 = 0.864 V, E-j=10 = 1.644 V vs. RHE). Furthermore, the ZABs using NPBC catalysts as an air cathode exhibit a high peak power density of 249 mW cm(-2) and long-term stability over 300 hours. This work provides guidance and ideas for designing and developing biomass-based carbon materials for electrochemical energy-related devices.
引用
收藏
页码:2717 / 2726
页数:10
相关论文
共 50 条
  • [1] Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs
    Li, Jie-Cheng
    Wu, Xiao-Tong
    Chen, Li-Jun
    Li, Nan
    Liu, Zhao-Qing
    ENERGY, 2018, 156 : 95 - 102
  • [2] High performance carbon free bifunctional air electrode for advanced zinc-air batteries
    Mainar, Aroa R.
    Blazquez, J. Alberto
    Frattini, Domenico
    Enterria, Marina
    Ortiz-Vitoriano, Nagore
    Urdampilleta, Idoia
    Grande, Hans-Jurgen
    ELECTROCHIMICA ACTA, 2023, 446
  • [3] High-Performance Zinc-Air Batteries Based on Bifunctional Hierarchically Porous Nitrogen-Doped Carbon
    Gui, Fukang
    Jin, Qiu
    Xiao, Dongdong
    Xu, Xiaobin
    Tan, Qinggang
    Yang, Daijun
    Li, Bing
    Ming, Pingwen
    Zhang, Cunman
    Chen, Zheng
    Siahrostami, Samira
    Xiao, Qiangfeng
    SMALL, 2022, 18 (08)
  • [4] Co/VN heterojunction anchored on multi-dimensional N-doped carbon for high-performance zinc-air batteries
    Deng, Daijie
    Zhang, Honghui
    Wu, Jianchun
    Zhu, Linhua
    Ling, Min
    Dong, Sihua
    Li, Huaming
    Li, Henan
    Xu, Li
    MATERIALS TODAY NANO, 2023, 24
  • [5] High-performance bifunctional electrocatalysts for zinc-air batteries using coaxial electrospun hollow N-doped carbon nanofibers decorated with NiCo and CoMn nanocrystals
    Yuan, Ye
    Fan, Chuanjun
    Wang, Zhixin
    Pang, Beili
    Zhang, Qian
    Chen, Yingjie
    Yu, Liyan
    Dong, Lifeng
    JOURNAL OF ENERGY STORAGE, 2025, 107
  • [6] Bamboo-derived aerogel with atomically dispersed Co as a high-performance bifunctional electrocatalyst for durable zinc-air batteries
    Yang, Zhengyu
    Ma, Ben
    Zhou, Yingke
    JOURNAL OF POWER SOURCES, 2025, 626
  • [7] N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries
    Ding, Jieting
    Wang, Peng
    Ji, Shan
    Wang, Hui
    Linkov, Vladimir
    Wang, Rongfang
    ELECTROCHIMICA ACTA, 2019, 296 : 653 - 661
  • [8] N-Doped Carbon Nanotubes Nucleated through Cobalt Nanoparticles as Bifunctional Catalysts for Zinc-Air Batteries
    Kumar, Sarvesh
    Kumar, Rajeev
    Goyal, Naveen
    Vazhayil, Ashalatha
    Yadav, Ankit
    Thomas, Nygil
    Sahoo, Balaram
    ACS APPLIED NANO MATERIALS, 2024, 7 (07) : 7865 - 7882
  • [9] Interface Engineering of CoO/N-Doped Carbon Nanomaterials as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Sun, Qiming
    Zhao, Yiwei
    Yu, Xiaodan
    Zhang, Chao
    Xing, Shuangxi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)
  • [10] Surface Engineering of N-Doped Carbon Derived from Polyaniline for Primary Zinc-Air Batteries
    Chávez-Hernández, Ángel
    Ramos-Castillo, Carlos M.
    Olivas, Amelia
    Delgado, Anabel D.
    Guerra-Balcázar, Minerva
    Álvarez-Contreras, Lorena
    Arjona, Noé
    ChemNanoMat, 2024, 10 (10)