Towards physics-informed explainable machine learning and causal models for materials research

被引:4
|
作者
Ghosh, Ayana [1 ]
机构
[1] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
关键词
Machine learning; Explainable machine learning; Causal models; Materials design; Materials discovery; Perovskites; Molecules; DRUG DISCOVERY; AFLOW LIBRARY; CATALYSIS; GRAPHENE; DESIGN; PREDICTION; STABILITY; CHEMISTRY; DYNAMICS; PUBCHEM;
D O I
10.1016/j.commatsci.2023.112740
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
From emergent material descriptions to estimation of properties stemming from structures to optimization of process parameters for achieving best performance - all key facets of materials science and related fields have experienced tremendous growth with the introduction of data-driven models. This gradual progression goes at par with developments of machine learning workflows, from purely data-driven shallow models to those that are well-capable in encoding more complex graphs, symbolic representations, invariances, and positional embeddings. This perspective aims at summarizing strategic aspects of such transitions while providing insights into the requirements of bringing in explainable, interpretable predictive models, and causal learning to aid in materials design and discovery. Although the focus remains on a variety of functional materials by providing a handful of case studies, the applications of such integrated methodologies are universal to facilitate fundamental understandings of materials physics while enabling autonomous experiments.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The scaling of physics-informed machine learning with data and dimensions
    Miller S.T.
    Lindner J.F.
    Choudhary A.
    Sinha S.
    Ditto W.L.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [22] A Review of Physics-Informed Machine Learning in Fluid Mechanics
    Sharma, Pushan
    Chung, Wai Tong
    Akoush, Bassem
    Ihme, Matthias
    ENERGIES, 2023, 16 (05)
  • [23] Physics-informed machine learning for inorganic scintillator discovery
    Pilania, G.
    McClellan, K. J.
    Stanek, C. R.
    Uberuaga, B. P.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [24] Probabilistic physics-informed machine learning for dynamic systems
    Subramanian, Abhinav
    Mahadevan, Sankaran
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [25] Predicting glass structure by physics-informed machine learning
    Bodker, Mikkel L.
    Bauchy, Mathieu
    Du, Tao
    Mauro, John C.
    Smedskjaer, Morten M.
    NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [26] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [27] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [28] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [29] Physics-Informed Extreme Learning Machine Lyapunov Functions
    Zhou, Ruikun
    Fitzsimmons, Maxwell
    Meng, Yiming
    Liu, Jun
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 1763 - 1768
  • [30] Physics-informed machine learning for moving load problems
    Kapoor, Taniya
    Wang, Hongrui
    Nunez, Alfredo
    Dollevoet, Rolf
    XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647