Predicting Survival of End-Stage Heart Failure Patients Receiving HeartMate-3: Comparing Machine Learning Methods

被引:1
|
作者
Loyaga-Rendon, Renzo Y. [1 ]
Acharya, Deepak [2 ]
Jani, Milena [1 ]
Lee, Sangjin [1 ]
Trachtenberg, Barry [3 ]
Manandhar-Shrestha, Nabin [4 ]
Leacche, Marzia [5 ]
Jovinge, Stefan [6 ]
机构
[1] Spectrum Hlth, Adv Heart Failure & Transplant Cardiol Sect, Grand Rapids, MI 49525 USA
[2] Univ Arizona, Sarver Heart Ctr, Div Cardiol, Tucson, AZ USA
[3] Methodist Hosp, Adv Heart Failure Sect, Houston, TX USA
[4] Frederick Meijer Heart & Vasc Inst, Grand Rapids, MI USA
[5] Spectrum Hlth, Cardiothorac Surg Div, Grand Rapids, MI USA
[6] Scania Univ Hosp, Lund, Sweden
关键词
HeartMate3; Machine Learning; Survival; CIRCULATORY SUPPORT; INTERMACS PROFILES; SELECTION; SCORE;
D O I
10.1097/MAT.0000000000002050
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
HeartMate 3 is the only durable left ventricular assist devices (LVAD) currently implanted in the United States. The purpose of this study was to develop a predictive model for 1 year mortality of HeartMate 3 implanted patients, comparing standard statistical techniques and machine learning algorithms. Adult patients registered in the Society of Thoracic Surgeons, Interagency Registry for Mechanically Assisted Circulatory Support (STS-INTERMACS) database, who received primary implant with a HeartMate 3 between January 1, 2017, and December 31, 2019, were included. Epidemiological, clinical, hemodynamic, and echocardiographic characteristics were analyzed. Standard logistic regression and machine learning (elastic net and neural network) were used to predict 1 year survival. A total of 3,853 patients were included. Of these, 493 (12.8%) died within 1 year after implantation. Standard logistic regression identified age, Model End Stage Liver Disease (MELD)-XI score, right arterial (RA) pressure, INTERMACS profile, heart rate, and etiology of heart failure (HF), as important predictor factors for 1 year mortality with an area under the curve (AUC): 0.72 (0.66-0.77). This predictive model was noninferior to the ones developed using the elastic net or neural network. Standard statistical techniques were noninferior to neural networks and elastic net in predicting 1 year survival after HeartMate 3 implantation. The benefit of using machine-learning algorithms in the prediction of outcomes may depend on the type of dataset used for analysis.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [21] Comparing different methods of assessing body composition in end-stage renal failure
    Cooper, BA
    Aslani, A
    Ryan, M
    Zhu, FYP
    Ibels, LS
    Allen, BJ
    Pollock, CA
    KIDNEY INTERNATIONAL, 2000, 58 (01) : 408 - 416
  • [22] Survival and Implantable Cardioverter-Debrillator Deactivation in End-Stage Congestive Heart Failure Patients
    Man, Lillian C.
    Ragupathi, Loheetha
    Mather, Paul
    JOURNAL OF CARDIAC FAILURE, 2015, 21 (08) : S119 - S120
  • [23] Statin treatment improves 18-months survival in patients with end-stage heart failure
    Tousoulis, Dimitris
    Drolias, Apostolis
    Antoniades, Charalambos
    Marinou, Kinakoula
    Papageorgiou, Nikos
    Gounari, Penny
    Antonopoulos, Alexios S.
    Stefanadi, Elli
    Pitsavos, Christos
    Stefanadis, Christodoulos
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 51 (10) : A332 - A332
  • [24] Surgical Therapy of End-Stage Heart Failure in Pediatric Patients
    Ayik, F.
    Oguz, E.
    Engin, C.
    Yagdi, T.
    Ulger, Z.
    Atay, Y.
    Ozbaran, M.
    TRANSPLANTATION PROCEEDINGS, 2011, 43 (03) : 935 - 937
  • [25] Dedifferentiated Cardiac Myocytes in Patients with End-Stage Heart Failure
    Richter, M.
    Polyakova, V
    Kubin, T.
    Kostin, S.
    Walther, T.
    TRANSPLANTATION, 2012, 94 (10) : 563 - 563
  • [26] Effectiveness of resynchronization therapy in patients with end-stage heart failure
    Molhoek, SG
    Bax, JJ
    van Erven, L
    Bootsma, M
    Boersma, E
    Steendijk, P
    van der Wall, EE
    Schalij, MJ
    AMERICAN JOURNAL OF CARDIOLOGY, 2002, 90 (04): : 379 - 383
  • [27] MitraClip® therapy in patients with end-stage systolic heart failure
    Franzen, Olaf
    van der Heyden, Jan
    Baldus, Stephan
    Schlueter, Michael
    Schillinger, Wolfgang
    Butter, Christian
    Hoffmann, Rainer
    Corti, Roberto
    Pedrazzini, Giovanni
    Swaans, Martin J.
    Neuss, Michael
    Rudolph, Volker
    Suerder, Daniel
    Gruenenfelder, Juerg
    Eulenburg, Christine
    Reichenspurner, Hermann
    Meinertz, Thomas
    Auricchio, Angelo
    EUROPEAN JOURNAL OF HEART FAILURE, 2011, 13 (05) : 569 - 576
  • [28] MitraClip implantation in patients with end-stage systolic heart failure
    Fiorelli, F.
    Giannini, C.
    De Carlo, M.
    Petronio, A. S.
    Tamburino, C.
    Capodanno, D.
    Ettori, F.
    Fiorina, C.
    Bedogni, F.
    Brambilla, N.
    EUROPEAN HEART JOURNAL, 2014, 35 : 694 - 694
  • [29] Differentiated approach to the treatment of patients with end-stage heart failure
    Shatova, O. Olesya
    Kurlianskaya, A.
    Rachok, L.
    Ostrovsky, Y.
    EUROPEAN JOURNAL OF HEART FAILURE, 2017, 19 : 378 - 379
  • [30] A new machine-learning-based prediction of survival in patients with end-stage liver disease
    Gibb, Sebastian
    Berg, Thomas
    Herber, Adam
    Isermann, Berend
    Kaiser, Thorsten
    JOURNAL OF LABORATORY MEDICINE, 2023, 47 (01) : 13 - 21