Predicting Survival of End-Stage Heart Failure Patients Receiving HeartMate-3: Comparing Machine Learning Methods

被引:1
|
作者
Loyaga-Rendon, Renzo Y. [1 ]
Acharya, Deepak [2 ]
Jani, Milena [1 ]
Lee, Sangjin [1 ]
Trachtenberg, Barry [3 ]
Manandhar-Shrestha, Nabin [4 ]
Leacche, Marzia [5 ]
Jovinge, Stefan [6 ]
机构
[1] Spectrum Hlth, Adv Heart Failure & Transplant Cardiol Sect, Grand Rapids, MI 49525 USA
[2] Univ Arizona, Sarver Heart Ctr, Div Cardiol, Tucson, AZ USA
[3] Methodist Hosp, Adv Heart Failure Sect, Houston, TX USA
[4] Frederick Meijer Heart & Vasc Inst, Grand Rapids, MI USA
[5] Spectrum Hlth, Cardiothorac Surg Div, Grand Rapids, MI USA
[6] Scania Univ Hosp, Lund, Sweden
关键词
HeartMate3; Machine Learning; Survival; CIRCULATORY SUPPORT; INTERMACS PROFILES; SELECTION; SCORE;
D O I
10.1097/MAT.0000000000002050
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
HeartMate 3 is the only durable left ventricular assist devices (LVAD) currently implanted in the United States. The purpose of this study was to develop a predictive model for 1 year mortality of HeartMate 3 implanted patients, comparing standard statistical techniques and machine learning algorithms. Adult patients registered in the Society of Thoracic Surgeons, Interagency Registry for Mechanically Assisted Circulatory Support (STS-INTERMACS) database, who received primary implant with a HeartMate 3 between January 1, 2017, and December 31, 2019, were included. Epidemiological, clinical, hemodynamic, and echocardiographic characteristics were analyzed. Standard logistic regression and machine learning (elastic net and neural network) were used to predict 1 year survival. A total of 3,853 patients were included. Of these, 493 (12.8%) died within 1 year after implantation. Standard logistic regression identified age, Model End Stage Liver Disease (MELD)-XI score, right arterial (RA) pressure, INTERMACS profile, heart rate, and etiology of heart failure (HF), as important predictor factors for 1 year mortality with an area under the curve (AUC): 0.72 (0.66-0.77). This predictive model was noninferior to the ones developed using the elastic net or neural network. Standard statistical techniques were noninferior to neural networks and elastic net in predicting 1 year survival after HeartMate 3 implantation. The benefit of using machine-learning algorithms in the prediction of outcomes may depend on the type of dataset used for analysis.
引用
收藏
页码:22 / 30
页数:9
相关论文
共 50 条
  • [1] Predicting Survival of End Stage Heart Failure Patients Receiving HeartMate-3 LVAD with Machine Learning. An STS-INTERMACS Analysis
    Loyaga-Rendon, R.
    Acharya, D.
    Jani, M.
    Lee, S.
    Trachtenberg, B.
    Manandhar-Shrestha, N.
    Jovinge, S.
    Leacche, M.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2022, 41 (04): : S18 - S18
  • [2] Obesity in patients with end-stage heart failure
    Krol, Bogumila
    Oprzedkiewicz, Aleksandra
    Szczurek, Wioletta
    Szygula-Jurkiewicz, Bozena
    KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA, 2018, 15 (03): : 176 - 179
  • [3] Pretransplant survival of patients with end-stage heart failure under competing risks
    Smith, Kevin
    Potters, Tseeye Odugba
    Zenarosa, Gabriel Lopez
    PLOS ONE, 2022, 17 (08):
  • [4] Rehospitalization Of Patients With End-stage Heart Failure Receiving Continuous, Palliative Inotrope Infusions
    EATON, R. A. C. H. A. E. L.
    KISSLING, K. E. V. I. N.
    HAAS, G. A. R. R. I. E.
    MCLAUGHLIN, E. R. I. C.
    PICKWORTH, K. E. R. R. Y.
    JOURNAL OF CARDIAC FAILURE, 2022, 28 (05) : S84 - S84
  • [5] Outcomes of HeartMate 3 in pediatric patients with end-stage heart failure: a single-center preliminary experience from Turkey
    Dogan, Eser
    Tutar, Zulal Ulger
    Tuncer, Osman Nuri
    Levent, Resit E.
    Engin, Cagatay
    Yagdi, Tahir
    Atay, Yuksel
    Ozbaran, Mustafa
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [6] Short-term Results of Heartmate 3 Ventricular Assist Device Implantation for End-Stage Heart Failure
    Ozturk, P.
    Ertugay, S.
    Sahutoglu, C.
    Engin, C.
    Nalbantgil, S.
    Yagdi, T.
    Ozbaran, M.
    TRANSPLANTATION PROCEEDINGS, 2017, 49 (03) : 599 - 602
  • [7] Inotropic therapy for end-stage heart failure patients
    Toma M.
    Starling R.C.
    Current Treatment Options in Cardiovascular Medicine, 2010, 12 (5) : 409 - 419
  • [8] Antiendomysial antibodies in patients with end-stage heart failure
    Prati, D
    Bardella, MT
    Peracchi, M
    Porretti, L
    Scalamogna, M
    Conte, D
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2002, 97 (01): : 218 - 219
  • [9] Dynamic cardiomyoplasty in patients with end-stage heart failure
    Elencwajg, B
    Trainini, J
    Roncoroni, A
    Griotti, J
    Jaimes, F
    Amor, R
    Schalet, H
    Moreno, S
    Perez, R
    Barisani, J
    XIII WORLD CONGRESS OF CARDIOLOGY: FREE PAPERS, 1998, : 605 - 608
  • [10] THE INTRODUCTION OF INOTROPIC FOR PATIENTS WITH END-STAGE HEART FAILURE
    Frewin, C.
    Kaan, A.
    Garland, E.
    CANADIAN JOURNAL OF CARDIOLOGY, 2010, 26 : 149D - 150D