Molecular dynamics of genome editing with CRISPR-Cas9 and rAAV6 virus in human HSPCs to treat sickle cell disease

被引:5
|
作者
Xu, Liwen [1 ]
Lahiri, Premanjali [2 ]
Skowronski, Jason [2 ]
Bhatia, Neehar [2 ]
Lattanzi, Annalisa [1 ]
Porteus, Matthew H. [1 ]
机构
[1] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[2] Stanford Univ, Stanford Lab Cell & Gene Med, Stanford, CA 94304 USA
关键词
HUMAN HEMATOPOIETIC STEM; ADENOASSOCIATED VIRUS; IMMUNE-RESPONSES; GENE-THERAPY; TUMOR SUPPRESSION; DNA-REPAIR; 53BP1; P53; PROTEIN; STABILITY;
D O I
10.1016/j.omtm.2023.07.009
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Ex vivo gene correction with CRISPR-Cas9 and a recombinant adeno-associated virus serotype 6 (rAAV6) in autologous hematopoietic stem/progenitor cells (HSPCs) to treat sickle cell disease (SCD) has now entered early-phase clinical investigation. To facilitate the progress of CRISPR-Cas9/rAAV6 genome editing technology, we analyzed the molecular changes in key reagents and cellular responses during and after the genome editing procedure in human HSPCs. We demonstrated the high stability of rAAV6 to serve as the donor DNA template. We assessed the benefit of longer HSPC pre-stimulation in terms of increased numbers of edited cells. We observed that the p53 pathway was transiently activated, peaking at 6 h, and resolved over time. Notably, we revealed a strong correlation between p21 mRNA level and rAAV6 genome number in cells and beneficial effects of transient inhibition of p53 with siRNA on genome editing, cell proliferation, and cell survival. In terms of potential immunogenicity, we found that rAAV6 capsid protein was not detectable, while a trace amount of residual Cas9 protein was still detected at 48 h post-genome editing. We believe this information will provide important insights for future improvements of gene correction protocols in HSPCs.
引用
收藏
页码:317 / 331
页数:15
相关论文
共 50 条
  • [21] Nanomedicine enables efficient CRISPR-Cas9 genome editing for disease treatment
    Ma, Lifang
    Dong, Caihong
    Yu, Meihua
    Song, Xinran
    Yu, Yongchun
    Chen, Yu
    SCIENCE BULLETIN, 2022, 67 (06) : 572 - 576
  • [22] CRISPR-Cas9 mediated genome editing of Huntington’s disease neurospheres
    Ji Yun Han
    Jaewoo Seo
    Yoori Choi
    Wooseok Im
    Jae-Jun Ban
    Jung-Joon Sung
    Molecular Biology Reports, 2023, 50 : 2127 - 2136
  • [23] Modelling the Applications of CRISPR-Cas9 for Treating Sickle Cell Disease
    Cooper, Grace
    Akteke, Elfin
    Dalvi, Viggo
    Delage, Laura
    Feberova, Natalie
    Fujikawa, Kento
    Klousseh, Edem
    Manoharan, Harish
    Mcdaniel, Kieran
    Powter, Morgan
    Seyoum, Michael
    Greig, James
    MacGillivray, Brendan
    FASEB JOURNAL, 2022, 36
  • [24] Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice
    Li, Ling
    Song, Linjiang
    Liu, Xiaowei
    Yang, Xi
    Li, Xia
    He, Tao
    Wang, Ning
    Yang, Suleixin
    Yu, Chuan
    Yin, Tao
    Wen, Yanzhu
    He, Zhiyao
    Wei, Xiawei
    Su, Weijun
    Wu, Qinjie
    Yao, Shaohua
    Gong, Changyang
    Wei, Yuquan
    ACS NANO, 2017, 11 (01) : 95 - 111
  • [25] Permanent alteration of Abcc6 with in vivo CRISPR-Cas9 genome editing
    Zhi, D.
    Dang, E.
    Wang, G.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (05) : S64 - S64
  • [26] Permanent Alteration of Abcc6 With In Vivo CRISPR-Cas9 Genome Editing
    Zhi, D.
    Dang, E.
    Wang, G.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (09) : S262 - S262
  • [27] Unintended Consequences of CRISPR/Cas9-Mediated Genome Editing for Treating Sickle Cell Disease
    Park, So Hyun
    Pan, Yidan
    Davis, Timothy
    Deshmukh, Harshavardhan
    Bao, Gang
    MOLECULAR THERAPY, 2020, 28 (04) : 228 - 228
  • [28] Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome
    Mueller, Maximilian
    Lee, Ciaran M.
    Gasiunas, Giedrius
    Davis, Timothy H.
    Cradick, Thomas J.
    Siksnys, Virginijus
    Bao, Gang
    Cathomen, Toni
    Mussolino, Claudio
    MOLECULAR THERAPY, 2016, 24 (03) : 636 - 644
  • [29] Multiplexing CRISPR-Cas9 Genome Editing in Human Hematopoietic Stem and Effector Cells
    Dever, Daniel P.
    Bak, Rasmus O.
    Reinisch, Andreas
    Cruz, David
    Majeti, Ravindra
    Porteus, Matthew
    MOLECULAR THERAPY, 2017, 25 (05) : 343 - 343
  • [30] Protocol for CRISPR-Cas9 genome editing of a swine cell line via electroporation
    Kiesler, Patricia
    Lee, Stella S.
    Norris, Alexis L.
    Miller, Mayumi F.
    Mercado, Carlo J.
    Moyer, Adam L.
    Maragh, Samantha
    STAR PROTOCOLS, 2024, 5 (04):