rgfc-Forest: An enhanced deep forest method towards small-sample fault diagnosis of electromechanical system

被引:12
|
作者
Ming, Yuhang [1 ]
Shao, Haidong [1 ]
Cai, Baoping [2 ]
Liu, Bin [3 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, Changsha 410082, Peoples R China
[2] China Univ Petr, Coll Mech & Elect Engn, Qingdao 266580, Peoples R China
[3] Univ Strathclyde, Dept Management Sci, Glasgow G1 1XQ, Lanark, Scotland
关键词
Fault diagnosis; Small training samples; rgfc-Forest; Random multi-grained scanning; Feature fusion cascade forest;
D O I
10.1016/j.eswa.2023.122178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep forest models offer a promising alternative to traditional deep neural networks by demanding fewer training samples and hyperparameters. However, existing deep forest fault diagnosis models encounter persistent challenges such as insufficient representation of multi-grained spatial information and redundancy of cascaded forest features. To address the above challenges, an enhanced deep forest method called random multi-grained fusion cascade forest (rgfc-Forest) is presented for fault diagnosis of electromechanical systems with limited training samples. First, a random multi-grained scanning module is designed to improve feature information learning. Subsequently, a feature fusion cascade forest module is constructed to improve the representativeness of features in multi-grained scanning and cascade forest delivery while ensuring data diversity. Finally, a decision tree self-growth strategy is combined to refine the classification capability of the high-level forest. To evaluate the effectiveness of our proposed method, we applied it to experimental data related to motor system and gearbox faults. Our results demonstrate significant improvements over existing methods: With just 20 samples per class, our method achieved an average accuracy of 84.41% for motor System Diagnosis. Similarly, for the gearbox system, we attained an impressive accuracy of up to 92.72% with the same limited dataset. These outcomes underscore the superior feature representation and fault classification capabilities of our approach compared to both benchmark deep forest models and mainstream deep learning methods when confronted with small training datasets.
引用
收藏
页数:15
相关论文
共 33 条
  • [31] Model and Data-Driven Combination: A Fault Diagnosis and Localization Method for Unknown Fault Size of Quadrotor UAV Actuator Based on Extended State Observer and Deep Forest
    Song, Jia
    Shang, Weize
    Ai, Shaojie
    Zhao, Kai
    SENSORS, 2022, 22 (19)
  • [32] Diesel engine small-sample transfer learning fault diagnosis algorithm based on STFT time-frequency image and hyperparameter autonomous optimization deep convolutional network improved by PSO-GWO-BPNN surrogate model
    Liu, Yangshuo
    Kang, Jianshe
    Guo, Chiming
    Bai, Yunjie
    OPEN PHYSICS, 2022, 20 (01): : 993 - 1018
  • [33] An intelligent fault diagnosis method for rotor-bearing system using small labeled infrared thermal images and enhanced CNN transferred from CAE
    He Zhiyi
    Shao Haidong
    Zhong Xiang
    Yang Yu
    Cheng Junsheng
    ADVANCED ENGINEERING INFORMATICS, 2020, 46