An Experimental Study of the Accuracy and Change Detection Potential of Blending Time Series Remote Sensing Images with Spatiotemporal Fusion

被引:3
|
作者
Wei, Jingbo [1 ,2 ]
Chen, Lei [1 ]
Chen, Zhou [2 ]
Huang, Yukun [3 ]
机构
[1] Nanchang Univ, Sch Math & Comp Sci, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R China
[3] Jiangxi Univ Finance & Econ, Sch Informat Management, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
spatiotemporal fusion; Landsat; MODIS; neural networks; dataset; REFLECTANCE FUSION; CROSS-CALIBRATION; MODIS; LANDSAT; NETWORK; MODEL;
D O I
10.3390/rs15153763
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Over one hundred spatiotemporal fusion algorithms have been proposed, but convolutional neural networks trained with large amounts of data for spatiotemporal fusion have not shown significant advantages. In addition, no attention has been paid to whether fused images can be used for change detection. These two issues are addressed in this work. A new dataset consisting of nine pairs of images is designed to benchmark the accuracy of neural networks using one-pair spatiotemporal fusion with neural-network-based models. Notably, the size of each image is significantly larger compared to other datasets used to train neural networks. A comprehensive comparison of the radiometric, spectral, and structural losses is made using fourteen fusion algorithms and five datasets to illustrate the differences in the performance of spatiotemporal fusion algorithms with regard to various sensors and image sizes. A change detection experiment is conducted to test if it is feasible to detect changes in specific land covers using the fusion results. The experiment shows that convolutional neural networks can be used for one-pair spatiotemporal fusion if the sizes of individual images are adequately large. It also confirms that the spatiotemporally fused images can be used for change detection in certain scenes.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] OBJECT-ORIENTED CHANGE DETECTION BASED ON SPATIOTEMPORAL RELATIONSHIP IN MULTITEMPORAL REMOTE-SENSING IMAGES
    Li, Liang
    Ying, Guowei
    Wen, Xuehu
    Zhang, Yun
    36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 1241 - 1248
  • [32] Elastic Registration of Remote Sensing Images for Change Detection
    Sun Y.
    Wang H.
    Li F.
    Wang N.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2018, 43 (01): : 53 - 59
  • [33] Change detection of multisource remote sensing images: a review
    Jiang, Wandong
    Sun, Yuli
    Lei, Lin
    Kuang, Gangyao
    Ji, Kefeng
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [34] Unsupervised change detection methods for remote sensing images
    Melgani, F
    Moser, G
    Serpico, SB
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII, 2002, 4541 : 211 - 222
  • [35] STFCropNet: A Spatiotemporal Fusion Network for Crop Classification in Multiresolution Remote Sensing Images
    Wu, Wei
    Liu, Yapeng
    Li, Kun
    Yang, Haiping
    Yang, Liao
    Chen, Zuohui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 4736 - 4750
  • [36] Spatiotemporal Fusion for Nighttime Light Remote Sensing Images With Multivariate Activation Function
    Zeng, Yi
    Gao, Boya
    Liu, Peng
    Zhao, Xinyi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [37] Enblending Mosaicked Remote Sensing Images With Spatiotemporal Fusion of Convolutional Neural Networks
    Wei, Jingbo
    Tang, Wenchao
    He, Chaoqi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 5891 - 5902
  • [38] CHANGE DETECTION WITH MULTI-SOURCE DEFECTIVE REMOTE SENSING IMAGES BASED ON EVIDENTIAL FUSION
    Chen, Xi
    Li, Jing
    Zhang, Yunfei
    Tao, Liangliang
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 125 - 132
  • [39] Multiscale Difference Feature-Fusion Network for Change Detection With Hyperspectral Remote Sensing Images
    Lv, Zhiyong
    Wang, Haoran
    Li, Wei
    Zhang, Ming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [40] Multiview Hypergraph Fusion Network for Change Detection in High-Resolution Remote Sensing Images
    Zhao, Xue
    Zhang, Kai
    Zhang, Feng
    Sun, Jiande
    Wan, Wenbo
    Zhang, Huaxiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4597 - 4610